字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:陳建霖
研究生英文姓名:Chen, Chien-Lin
中文論文名稱:GNSS及視覺與距離感測器於室外保全機器人之應用
英文論文名稱:Application of GNSS with Visual and Range Sensors to Outdoor Security Robot
指導教授姓名:莊季高
口試委員中文姓名:教授︰魏榮宗
副教授︰王乃堅
教授︰莊季高
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學號:10467015
請選擇論文為:應用型
畢業年度:106
畢業學年度:105
學期:
語文別:英文
論文頁數:83
中文關鍵詞:GNSS即時動態定位系統雷射測距儀模糊控制器影像處理輪式移動機器人
英文關鍵字:GNSS RTK positioning systemFuzzy controllerImage processingLaser rangefinderWMR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
Abstract (Chinese) I
Abstract (English) II
Acknowledgement (Chinese) III
Contents IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Research Motivation and Goal 1
1.3 Literature Review 2
1.4 Organization of this Thesis 4
Chapter 2 System Setup 6
2.1 WMR System Description 6
2.2 WMR Introduction of Hardware 7
2.2.1 The Electronic Module of Control Board 7
2.2.2 DC Motor 9
2.2.3 Motor Encoder 9
2.2.4 Kinetic Equations of WMR 10
2.3 Laser Rangefinder 14
2.3.1 Description of the Laser Rangefinder 14
2.3.2 Operating Principle of the Laser Rangefinder 16
2.4 Webcam 18
2.5 GNSS RTK Positioning System 21
2.5.1 GNSS Structure 26
2.5.1.1 GPS Structure 26
2.5.1.2 BDS Structure 28
2.5.2 Principle of GNSS Positioning 28
Chapter 3 Image Processing 30
3.1 Image Processing Algorithm 30
3.1.1 Integral Image 30
3.1.2 AdaBoost Learning Algorithm 34
3.1.3 Cascade of Classifiers 37
3.1.4 Experiment Results 39
Chapter 4 Control Scheme 44
4.1 Fuzzy Control System 46
4.1.1 Fuzzification 46
4.1.2 Inference Engine 47
4.1.3 Fuzzy Rule Base 47
4.1.4 Defuzzification 48
4.2 Obstacle Avoidance Control 49
4.3 A* Algorithm 54
Chapter 5 Experimental Results 58
5.1 Human-Machine Interface 58
5.2 LabVIEW Software Operating Interface 59
5.3 Experiments of Performing Outdoor Patrol Task 60
5.3.1 WMR Patrols along a Building 60
5.3.2 Detect the Intruder 72
Chapter 6 Conclusions and Future Prospect 76
6.1 Conclusions 76
6.2 Future Prospect and Suggestions 76
6.2.1 Hardware 77
6.2.2 Software 77
References 78
[1]D. Kurabayashi, S. Koga, T. Arai, J. Ota, H. Asama, and I. Endo, “Local Path Re-planning for Unforeseen Obstacle Avoidance by an Autonomous Sweeping Robot,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3153-3158, 1998.

[2]S. Farsoni, C. T. Landi, F. Ferraguti, C. Secchi, and M. Bonfè, “Compensation of Load Dynamics for Admittance Controlled Interactive Industrial Robots Using a Quaternion-Based Kalman Filter,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 672-679, 2017.

[3]S. Bhat, and M. Meenakshi, “Embedded System Based Waiter and Military Robot Path Planning,” Proceedings of International Conference on Control, Instrumentation, Communication and Computational Technologies, pp. 507-510, 2015.

[4]T. K. Morimoto, E. W. Hawkes, and A. M. Okamura, “Design of a Compact Actuation and Control System for Flexible Medical Robots,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1579-1585, 2017.

[5]H. C. Huang, “Fusion of Modified Bat Algorithm Soft Computing and Dynamic Model Hard Computing to Online Self-Adaptive Fuzzy Control of Autonomous Mobile Robots,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 972-979, 2016.

[6]Z. Qingxin, Y. Huiyang, and X. Yuhuan, “Research on Mobile Robot Perceptual System Based on ZigBee,” Proceedings of 25th Chinese Control and Decision Conference, pp. 2893-2896, 2013.

[7]Y. Kantaros, and M. M. Zavlanos, “Global Planning for Multi-Robot Communication Networks in Complex Environments,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1045-1061, 2016.

[8]S. H. Lian, “Fuzzy Logic Control of an Obstacle Avoidance Robot,” Proceedings of 5th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 26-30, 1996.

[9]M. S. Aman, M. A. Mahmud, H. Jiang, A. Abdelgawad, and K. Yelamarthi, “A Sensor Fusion Methodology for Obstacle Avoidance Robot,” Proceedings of IEEE International Conference on Electro Information Technology, pp. 0458-0463, 2016.

[10]H. Tang, B. H. Tan, and R. Yan, “Robot-to-human Handover with Obstacle Avoidance via Continuous Time Recurrent Neural Network,” Proceedings of IEEE Congress on Evolutionary Computation, pp. 1204-1211, 2016.

[11]H. Fukai, Y. Mitsukura, and G. Xu, “The Calibration between Range Sensor and Mobile Robot, and Construction of an Obstacle Avoidance Robot,” Proceedings of 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 737-742, 2012.

[12]Y. Yuan, J. Gu, F. Chen, Y. Xu, H. Yang, and Y. Miao, “Study of Obstacle Avoidance Navigation Robot Control Based on Bland Man Tracing Wall Theory,” Proceedings of IEEE International Conference on Information and Automation, pp. 398-403, 2015.

[13]T. Kho, M. H. Salih, Y. S. Woo, Z. Ng, J. J. Min, and F. Yee, “Enhance Implementation of Embedded Robot Auto-Navigation System Using FPGA for Better Performance,” Proceedings of 3rd International Conference on Electronic Design, pp. 309-314, 2016.

[14]B. L. E. A. Balasuriya, B. A. H. Chathuranga, B. H. M. D. Jayasundara, N. R. A. C. Napagoda, S. P. Kumarawadu, D. P. Chandima, and A. G. B. P. Jayasekara, “Outdoor Robot Navigation Using Gmapping Based SLAM Algorithm,” Proceedings of Moratuwa Engineering Research Conference, pp. 403-408, 2016.

[15]E. North, J. Georgy, M. Tarbouchi, U. Iqbal, and A. Noureldin, “Enhanced Mobile Robot Outdoor Localization Using INS/GPS Integration,” Proceedings of International Conference on Computer Engineering & Systems, pp. 127-132, 2009.

[16]S. G. Lin, H. Chao, and F. C. Yu, “Attitude Determination Using Low-Cost Single-Frequency GPS/BDS Receivers and Handsets Onboard Sensors,” Proceedings of the European Navigation Conference, 2015.

[17]S. G. Lin, “Assisted Adaptive Extended Kalman Filter for Low-Cost Single-Frequency GPS/SBAS Kinematic Positioning,” GPS Solutions, vol. 19, no. 2, pp. 215-223, 2015.

[18]S. A. Fadzli, S. I. Abdulkadir, M. Makhtar, and A. A. Jamal, “Robotic Indoor Path Planning Using Dijkstra's Algorithm with Multi-Layer Dictionaries,” Proceedings of 2nd International Conference on Information Science and Security, pp. 1-4, 2015.

[19]B. Q. Ye, M. F. Zhao, and Y. Wang, “Research of Path Planning Method for Mobile Robot based on Artificial Potential Field,” Proceedings of International Conference on Multimedia Technology, pp. 3192-3195, 2011.

[20]Y. P. Wu, Study of Genetic Algorithm for Optimal Robot Path Planning, Master Thesis, Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, 2013.

[21]L. Zhang, H. Min, H. Wei, and H. Huang, “Global Path Planning for Mobile Robot Based on A* Algorithm and Genetic Algorithm,” Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 1795-1799, 2012.

[22]Y. W. Chen, and W. Y. Chiu, “Optimal Robot Path Planning System by Using a Neural Network-Based Approach,” Proceedings of International Automatic Control Conference, pp. 85-90, 2015.

[23]Y. H. Lai, Image-Based Human Pose Recognition, Master Thesis, Industrial Technology R&D Master Program of Electrical and Computer Engineering College, National Chiao Tung University, 2009.

[24]Y. J. Tzeng, Applications of Background Subtraction for the Determination of Human Existence in a Working Environment, Master Thesis, Institute of Automation Technology, National Taipei University of Technology, 2012.

[25]H. Kruppa, M. Castrillon-Santana, and B. Schiele, “Fast and Robust Face Finding via Local Context,” Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 157-164, 2003.

[26]Y. H. Lu, Application of DGPS and Image Processing to WMR Outdoor Patrol, Master Thesis, Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, 2016.

[27]R. Dhaouadi, and A. A. Hatab, “Dynamic Modelling of Differential-Drive Mobile Robots Using Lagrange and Newton-Euler Methodologies: A Unified Framework,” Advances in Robotics & Automation, vol. 2, no. 2, 2013.

[28]D. U. Yun, “Kinematics and Dynamic Modeling and Simulation Analysis of Three-wheeled Mobile Robot,” Proceedings of International Conference on Mechanics Design, Manufacturing and Automation, 2016.

[29]Y. Zhao, and S. L. BeMent, “Kinematics, Dynamics and Control of Wheeled Mobile Robots,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 91-96, 1992.

[30]L. Ren, W. Wang, and Z. Du, “A New Fuzzy Intelligent Obstacle Avoidance Control Strategy for Wheeled Mobile Robot,” Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 1732-1737, 2012.

[31]SICK Taiwan Company Limited, Product portfolio: 2D LiDAR sensors/LMS1xx, https://www.sick.com/tw/en/.

[32]SICK Taiwan Company Limited, Manuals & Software: Laser Measurement Sensors of the LMS1xx Product Family, [DVD-ROM].

[33]Microsoft, LifeCam Studio Webcam Manual, https://www.microsoft.com/accessories/zh-tw/products/webcams/lifecam-studio/q2f-00017.

[34]Logitech, C100 Webcam, http://support.logitech.com/zh_tw/product/webcam-c100.

[35]Wikipedia, WebRTC, https://en.wikipedia.org/wiki/WebRTC.

[36]WisdomWin management consulting firm, http://www.wisdomwin.com.tw/tw/about.html.

[37]Wikipedia, Satellite navigation, https://en.wikipedia.org/wiki/Satellite_navigation.

[38]C. Y. Lu, Application of Path Planning and Image Searching to Wheeled Mobile Robot Control, Master Thesis, Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, 2015.

[39]Wikipedia, Global Positioning System, https://en.wikipedia.org/wiki/Global_Positioning_System.

[40]Wikipedia, BeiDou Navigation Satellite System, https://en.wikipedia.org/wiki/BeiDou_Navigation_Satellite_System.

[41]H. Chao, Attitude Determination Using Single-Frequency GPS/BDS Receivers and Mobile 9DOF IMU, Master Thesis, Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, 2015.

[42]P. Viola, and M. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

[43]R. Lienhart, J. Maydt, “An Extended Set of Haar-like Features for Rapid Object Detection,” Proceedings of International Conference on Image Processing, vol. 1, pp. I-900-I-903, 2002.

[44]R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection,” Pattern Recognition, pp. 297-304, 2003.

[45]Wikipedia, Summed area table, https://en.wikipedia.org/wiki/Summed_area_table.

[46]P. Viola, and M. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-511-I-518, 2001.

[47]Y. Freund, and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.

[48]MathWorks, https://www.mathworks.com/.

[49]L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no.3, pp.338-353, 1965.

[50]楊英魁(民85)。模糊控制理論與技術。台北市:全華。

[51]Y. C. Yang, Application of Fuzzy Theory to Wheeled Mobile Robot for Environment Exploration and Map Building, Master Thesis, Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, 2011.

[52]P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no.2, pp. 100-107, 1968.

[53]Wikipedia, A* search algorithm, https://en.wikipedia.org/wiki/A*_search_algorithm.
(此全文20220807後開放外部瀏覽)
電子全文
全文檔開放日期:2022/08/07
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *