字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:蔡翔宇
研究生英文姓名:Tsai, Shiang-Yu
中文論文名稱:三角褐指藻於缺磷環境下之蛋白質體定量
英文論文名稱:Quantitative Proteomic of Phaeodactylum tricornutum in Phosphate Limited Environment
指導教授姓名:許邦弘
口試委員中文姓名:教授︰鄒文雄
副教授︰鄭美玲
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學號:1043B011
請選擇論文為:學術型
畢業年度:106
畢業學年度:105
學期:
語文別:中文
論文頁數:42
中文關鍵詞:穩定同位素標定三角褐指藻磷限制
英文關鍵字:SILACPhaeodactylum tricornutumPhosphate Limited
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
磷酸根在生物體內扮演重要的化學分子,被利用於合成胞器外膜,同時也參與基因訊息的儲存。為了進一步了解磷酸根對於矽藻細胞功能與蛋白質調控的重要程度,本研究利用穩定同位素標定法加以修飾後,配合質譜蛋白質體基本定量方式進行研究。三角褐指藻(Phaeodactylum tricornutum)被認為是良好的模式生物,通常用於了解環境變化對於細胞反應的訊息,原因是其基因體已經完全解碼可以配合蛋白體從事研究。實驗中使用氮的穩定性同位素15N。並利用層析串連式質譜儀解析三角褐指藻的蛋白資訊。
Phosphorus plays decisive roles in living organism such as being the building block of cell membrane, and the genetic information storage. In order to investigate how phosphorus availability affects cellular functions at the protein level in diatoms, a modified stable isotope labeling by amino acids in cell culture (SILAC) method coupled with mass spectrometry based quantitative proteomics approach was performed in this study. Phaeodactylum tricornutum serves as a good model organism for understanding the environmental impact to cellular responses in diatoms because of the available comprehensive genomics and proteomics information. The stable isotope of nitrogen, 15N, was introduced in the culture medium as the nitrogen source for protein labeling. The protein profiles of Phaeodactylum tricornutum were evaluated by LC-MS/MS analysis.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖表目錄 V
第一章前言 1
1.1. 矽藻與模式生物 1
1.2. 三角褐指藻 1
1.3. 人造海水 2
1.4. 磷限制對於生物之影響 2
1.5. 同位素標定胺基酸SILAC (Stable Isotope Labeling with Amino acid in Cell culture) 3
1.6. 液向層析串聯式質譜儀UPLC-MS/MS 3
1.7. 研究目標 5
第二章實驗儀器與材料 6
2.1. 藻種來源 6
2.2. 人造海水與配方 6
2.3. 培養環境 6
2.5. 實驗儀器 7
第三章分析方法建立 8
3.1. 實驗設計 8
3.1. 生長計算 8
3.2. 光子利用效率 8
3.3. 蛋白萃取與電泳 8
3.4. 酵素水解 9
3.5. 質譜分析 9
3.6. 資料處理 10
第四章磷限制環境分析 11
4.1. 環境與矽藻生長關係 11
4.2. 蛋白體研究 11
4.3.代謝途徑改變 12
4.4 功能分析 13
參考文獻 41

1. Fields, S. and M. Johnston, Cell biology. Whither model organism research? Science, 2005. 307(5717): p. 1885-6.
2. Yool, A. and T. Tyrrell, Role of diatoms in regulating the ocean's silicon cycle. Global Biogeochemical Cycles, 2003. 17(4): p. n/a-n/a.
3. Sumper, M. and E. Brunner, Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana. Chembiochem, 2008. 9(8): p. 1187-94.
4. Armbrust, E.V., The life of diatoms in the world's oceans. Nature, 2009. 459(7244): p. 185-92.
5. Allen, A.E., et al., Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 2011. 473(7346): p. 203-+.
6. Bowler, C., et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008. 456(7219): p. 239-44.
7. De Martino, A., et al., Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. Journal of Phycology, 2007. 43(5): p. 992-1009.
8. Tesson, B., C. Gaillard, and V. Martin-Jézéquel, Insights into the polymorphism of the diatom Phaeodactylum tricornutum Bohlin. Botanica Marina, 2009. 52(2).
9. Maheswari, U., et al., The Diatom EST database. Nucleic Acids Research, 2005. 33: p. D344-D347.
10. Tsuchiya, K., et al., Phytoplankton community response and succession in relation to typhoon passages in the coastal waters of Japan. Journal of Plankton Research, 2013. 36(2): p. 424-438.
11. Liu, H.C., et al., Discrimination between the influences of river discharge and coastal upwelling on summer microphytoplankton phosphorus stress in the East China Sea. Continental Shelf Research, 2013. 60: p. 104-112.
12. Laws, E.A., S. Pei, and P. Bienfang, Phosphate-limited growth of the marine diatom Thalassiosira weissflogii (Bacillariophyceae): evidence of non-monod growth kinetics(1). J Phycol, 2013. 49(2): p. 241-7.
13. Ong, S.E., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 2002. 1(5): p. 376-386.
14. Yates, J.R., 3rd, et al., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem, 1995. 67(8): p. 1426-36.
15. Masamichi Yamashita, J.B.F., Electrospray Ion Source. Another Variation on the Free-Jet Theme.pdf. J. Phys. Chem, 1984: p. 4451–4459.
16. Snyder, A.P., American Chemical Society. Division of Analytical Chemistry., and American Chemical Society. Meeting, Biochemical and biotechnological applications of electrospray ionization mass spectrometry. ACS symposium series,. 1995, Washington, DC: American Chemical Society. xii, 601 p.
17. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source. Analytical Chemistry, 1996. 68(1): p. 1-8.
18. Maxwell, K. and G.N. Johnson, Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 2000. 51(345): p. 659-668.
19. Rosyara, U.R., et al., Photochemical Efficiency and SPAD Value as Indirect Selection Criteria for Combined Selection of Spot Blotch and Terminal Heat Stress in Wheat. Journal of Phytopathology, 2010. 158(11-12): p. 813-821.
20. Pomroy, A.J., Direct counting of bacteria preserved with lugol iodine solution. Appl Environ Microbiol, 1984. 47(5): p. 1191-2.
21. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
22. Yang, Z.K., et al., Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environmental Microbiology, 2014. 16(6): p. 1793-1807.
電子全文
全文檔開放日期:2020/07/30
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *