字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:古若筠
研究生英文姓名:Ko, Jo-Yun
中文論文名稱:奈米粒子結合LDI-MS免疫法應用於病毒感染快速診斷
英文論文名稱:Nanoparticles-based LDI-MS Immunoassays for the Rapid Diagnosis of Viral Infection
指導教授姓名:黃志清
口試委員中文姓名:副教授︰黃郁棻
助理教授︰陳建甫
教授︰黃志清
助理教授︰林翰佳
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學號:1043B004
請選擇論文為:學術型
畢業年度:106
畢業學年度:105
學期:
語文別:中文
論文頁數:55
中文關鍵詞:腸病毒七十一型金奈米粒子雷射脫附游離法金團促離子訊號放大
英文關鍵字:Enterovirus 71gold nanoparticleslaser desorption/ionizationgold cluster ionssignal amplification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
腸病毒七十一型 (Enterovirus 71, EV71) 屬於單鏈核糖核酸病毒,為主要引起手、足、口病 (hand-foot-and-mouth disease, HFMD) 的病原體之一,由於其容易引起神經系統併發症,且對五歲以下幼兒危險性最高,故發展一個能快速篩選出腸病毒七十一型感染者的方法至關重要。在本研究中,我們使用修飾有腸病毒抗體的金奈米粒子 (AbEV71−Au NPs) 搭配上醋酸纖維薄膜 (cellulose acetate membrane, CAM) ,以一種類似於酵素免疫分析法 (enzyme-linked immunosorbent assay, ELISA) 的三明治法結合雷射脫附游離質譜儀 (laser desorption/ionization mass spectrometry, LDI-MS) 對腸病毒進行簡單且快速的檢測。當CAM表面EV71濃度愈高,其捕捉之AbEV71−Au NPs則愈多,而Au NPs受到雷射照射後產生金團簇離子 ([Aun]+; n = 1−3) 的訊號會越高。另外,CAM不只能有效降低背景雜訊及減少甜點現象,也可作為一個捕捉平台幫助EV71與雜質分離,而其立體結構亦能增加表面積比值有助於訊號放大,我們的偵測極限約為1000 PFU/mL。我們研發出一種不需經過純化、分離等預處理,且操作簡單、快速、低成本的病毒檢測方式,未來可藉由改變奈米金屬粒子及抗體來對各式病毒進行檢測。
目錄
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 V
表目錄 VI
1. Introduction 1
1-1 Enterovirus 1
1-2 Enterovirus 71 2
1-3 Detection of Virus 3
1-4 Application of Nanomaterials in LDI-MS 6
1-5 Metallic bar code-based LDI-MS immunoassays 8
1-6 Research motives 9
2. Method and Materials 10
2-1 Materials 10
2-2 Instruments 10
2-3 Preparation of AbEV71−Au NP and 11-MUA/AbEV71-Au NPs 11
2-4 Detect of virus 12
3. Results and discussion 15
3-1 Characterization of AbEV71−Au NPs. 15
3-2 Optimization and advantages of virus capture platform 16
3-3 Detection of EV71. 17
3-4 Optimization of the metallic nanoparticle probe 18
3-5 Diagnosis of EV71 in complex biological sample 20
3-6 JEV detection by nanoparticles-based LDI-MS immunoassays 21
4. Conclusion 22
本文圖表 23
參考文獻 46
[1] Solomon, T.; Lewthwaite, P.; Perera, D.; Cardoso, M. J.; McMinn, P.; Ooi, M. H. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect. Dis. 2010, 10, 778–790.
[2] Oberste, M. S.; Maher, K.; Kilpatrick, D. R.; Pallansch, M. A. Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 2010, 10, 778–790.
[3] Foo, D. G. W.; Ang, R. X.; Alonso, S.; Chow, V. T. K.; Quak, S. H.; Poh, C. L. Identification of immunodominant VP1 linear epitope of enterovirus 71 (EV71) using synthetic peptides for detecting human anti-EV71 IgG antibodies in western blots. Clin. Microbiol. Infect. 1999, 73, 1941−1948.
[4] Ooi, M. H.; Wong, S. C.; Lewthwaite, P.; Cardosa, M. J.; Solomon, T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010, 9, 1097−1105.
[5] McMinn, P. C. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev. 2002, 26, 91−107.
[6] Bible, J. M; Pantelidis, P; Chan, P. K.; Tong, C. Y. Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev Med Virol. 2007, 17, 371−379.
[7] Chia, M.-Y.; Chiang, P.-S.; Chung, W.-Y.; Luo, S.-T.; Lee, M.-S. Epidemiology of enterovirus 71 infections in Taiwan. Pediatr Neonatol. 2014, 55, 243−249.
[8] Huang, C. C.; Liu. C. C.; Chang, Y. C.; Chen. C. Y.; Wang. S. T.; Yeh. T. F. Neurologic complications in children with enterovirus 71 infection. N Engl J Med. 1999, 341, 936−942.
[9] Nagy, G.; Takatsy, S.; Kukan, E.; Mihaly, I.; Domok, I. Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch. Virol. 1982, 71, 217–27.
[10] Gilgen, M.; Germann, D.; Luthy, J.; Hubner, P. Three-step isolation method for sensitive detection of enterovirus, rotavirus, hepatitis A virus, and small round structured viruses in water samples. Int. J. Food Microbiol. 1997, 37, 189–199.
[11] Tsao, K.-C.; Chan, E.-C.; Chang, L.-Y.; Chang, P.-Y.; Huang, C.-G.; Chen, Y.-P.; Chang, S.-C.; Lin, T.-Y.; Sun, C.-F.; Shih, S.-R. Responses of IgM for enterovirus 71 infection. J. Med. Virol. 2002, 68, 574–580.
[12] Oberste, M. S.; Maher, K.; Kilpatrick, D. R.; Pallansch, M. A. Molecular Evolution of the Human Enteroviruses: Correlation of Serotype with VP1 Sequence and Application to Picornavirus Classification. J. Virol. 1999, 73, 1941–1948.
[13] de La Rica, R.; Stevens, M. M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Nanotechnol. 2012, 8, 1759–1764.
[14] Oberste, M. S.; Nix, W. A.; Maher, K.; Pallansch, M. A. Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J. Clin. Virol. 2003, 26, 375–377.
[15] Oberste, M. S.; Maher, K.; Flemister, M. R.; Marchetti, G.; Kilpatrick, D. R.; Pallansch, M. A. Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J. Clin. Microbiol 2000, 38, 1170–1174.
[16] Nix, W. A.; Oberste, M. S.; Pallansch, M. A. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J. Clin. Microbiol 2006,448, 2698–2704.
[17] Jans, h.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012, 41, 2849–2866.
[18] Howes, P. D.,; Chandrawati, R,; Stevens, M. M. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390–1247390.
[19] Niikura, K.; Nagakawa, K.; Ohtake, N.; Suzuki, T.; Matsuo, Y.; Sawa, H.; Ijiro, K. Gold nanoparticle arrangement on viral particles through carbohydrate recognition: a non-cross-linking approach to optical virus detection. Bioconjug Chem. 2009, 20, 1848–1852.
[20] Zhou, C.-H.; Zhao, J.-Y.; Pang, D.-W.; Zhang, Z.-L. Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Anal. Chem. 2014, 86, 2752–2759.
[21] Mu, B.; Huang, X.; Bu, P.; Zhuang, J.; Cheng, Z.; Feng, J.; Yang, D.; Dong, C.; Zhang, J.; Yan, X. Influenza virus detection with pentabody-activated nanoparticles. J Virol. Methods 2010, 169, 282–289.
[22] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.
[23] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, 1959–1964.
[24] Griffin, J.; Singh, A. K.; Senapati, D.; Rhodes, P.; Mitchell, K.; Robinson, B.; Yu, E.; Ray, P. C. Size- and Distance-Dependent Nanoparticle Surface-Energy Transfer (NSET) Method for Selective Sensing of Hepatitis C Virus RNAJ. Chem. Eur. J. 2009, 15, 342–351.
[25] Wei, JH.; Zheng, LT.; Lv, X.; Bi, YH.; Chen, WW.; Zhang, W.; Shi, Y.; Zhao, L.; Sun, XM.; Wang, F.; Cheng, SH.; Yan, JH.; Liu, WJ.; Jiang, XY.; Gao, GF .; Li, XB. Analysis of Influenza Virus Receptor Specificity Using Glycan-Functionalized Gold Nanoparticles. ACS Nano 2014, 8, 4600–4607.
[26] Zagorovsky, K.; Chan, W. C.; A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens. Anal. Chem. 2013, 125, 3250–3253.
[27] Xu, SH.; Ouyang, WJ.; Xie, PS.; Lin, Y.; Qin, B.; Lin, ZY.; Chen, GN.; Guo, LH. Highly Uniform Gold Nanobipyramids for Ultrasensitive Colorimetric Detection of Influenza Virus. Anal. Chem. 2017, 89, 1617–1623.
[28] Zhou, C.-H.; Zhao, J.-Y.; Pang, D.-W.; Zhang, Z.-L. Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Anal. Chem. 2014, 86, 2752–2759.
[29] Jang, K. J.; Lee, H.; Jin, H.-L.; Park, Y.; Nam, J. M. Restriction-enzyme-coded gold-nanoparticle probes for multiplexed DNA detection. Small 2009, 5, 2665–2668.
[30] Glynou, K.; Ioannou, P. C.; Christopoulos, T. K.; Syriopoulou, V. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal. Chem. 2003, 75, 4155–4160.
[31] Deng, ZT.; Zhang, Y.; Yue, JC.; Tang, FQ.; Wei, Q. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J. Phys. Chem. B 2007, 111, 12024–12031.
[32] Agrawal, A.; Zhang, CY; Byassee, T.; Tripp, R. A.; Nie, S. M. Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal. Chem. 2006, 78, 1061−1070.
[33] Li, F.; Zhang, Z.-P.; Peng, J.; Cui, Z.-Q.; Pang, D.-W.; Li, K.; Wei, H.-P; Zhou, Y.-F.; Wen, J.-K.; Zhang, X.-E. Imaging Viral Behavior in Mammalian Cells with Self-Assembled Capsid-Quantum-Dot Hybrid Particles. Small 2009, 5, 718−726.
[34] Liu, X.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J. Am. Chem. Soc. 2013, 135, 11832–11839.
[35] Chen, L.; Zhang, X.; Zhou, G.; Xiang, X.; Ji, X. H.; Zheng, Z.; He, Z.; Wang, H. Simultaneous Determination of Human Enterovirus 71 and Coxsackievirus B3 by Dual-Color Quantum Dots and Homogeneous Immunoassay. Anal. Chem. 2012, 84, 3200−3207.
[36] Wang, J.-J.; Jiang, Y.-Z.; Lin, Y.; Wen, L.; Lv, C. Zhang, Z.-L.; Chen, G.; Pang, D.-W. Simultaneous Point-of-Care Detection of Enterovirus 71 and Coxsackievirus B3. Anal. Chem. 2015, 87, 11105−11112.
[37] Tsang, M.-K.; Ye, W.; Wang, G.; Li, J.; Yang, M.; Hao, J. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System. ACS Nano. 2016, 10, 598–605.
[38] Zhang, H.; Harpster, M. H.; Wilson, W. C.; Johnson, P. A. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Langmuir 2012, 28, 4030–4037.
[39] Wabuyele, M. B.; T. Vo-Dinh T. Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal. Chem. 2005, 77, 7810–7815.

[40] Driskell, J. D.; Jones, C. A.; Tompkins, S. M.; Tripp, R. A. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analyst 2011, 136, 3083–3090.
[41] Yung, Y. T.; Chang, C. C.; Lin, Y. L.; Hsieh, S. L.; Wang, G. J. Wang, Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes. Biosens. Bioelectron. 2016, 77, 90–98.
[42] Cao, YH. C.; Rongchao, J.; Mirkin. C. A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002, 297, 1536 –1540.
[43] Tung, Y. T.; Chang, C. C. Lin, ; Y. L.; Hsieh, S. L.; Wang, G. J. Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes. Biosens. Bioelectron. 2016, 77, 90−98.
[44] Zhang, J.; Ting, B. P.; Jana, N. R.; Gao, Z.; Ying, J. Y. Ultrasensitive electrochemical DNA biosensors based on the detection of a highly characteristic solid-state process. Small 2009, 5, 1414−1417.
[45] Kleo, K.; Kapp, A.; Ascher, L.; Lisdat, F. Detection of vaccinia virus DNA by quartz crystal microbalance. Anal. Biochem. 2011, 418, 260–266.
[46] Wei, J.; Buriak, J. M.; Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399, 243–246.
[47] Aebersold, R.; Goodlett, D. R. Mass spectrometry in proteomics. Chem. Rev. 2001, 101, 269–295.
[48] Tholey, A.; Heinzle, E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives. Anal. Bioanal. Chem. 2006, 386, 24–37.
[49] Sunner, J.; Dratz, E.; Chen Y. C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335–4342.
[50] Chiang, C.-K.; Chen, W.-T.; Chang, H.-T. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 2011, 40, 1269–1281.
[51] Qu, Y. S.; Adam, B. L.; Yasui, T.; Ward, M. D.; Cazares, L. H.; Schellhammer, P. F.; Feng, Z. D.; Semmes, O. J.; Wright, G. L. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 2002, 48, 1835−1843.
[52] Banks, R. E.; Stanley, A. J.; Cairns, D. A.; Barrett, J. H.; Clarke, P.; Thompson, D.; Selby, P. J. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin. Chem. 2005, 51, 1637−1649.
[53] Koopmann, J.; Zhang, Z.; White, N.; Rosenzweig, J.; Fedarko, N.; Jagannath, S.; Canto, M. I.; Yeo, C. J.; Chan, D. W.; Goggins, M. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res. 2004, 10, 860−868.
[54] Lin, X.-C.; Wang, X.-N.; Liu, L.; Wen, Q.; Yu, R.-Q.; Jiang, J.-H. Surface Enhanced Laser Desorption Ionization of Phospholipids on Gold Nanoparticles for Mass Spectrometric Immunoassay. Anal. Chem. 2016, 88, 9881−9884.
[55] Wang, J.; Cheng, M. T.; Zhang, Z.; Guo, LQ.; Liu, Q.; Jiang, GB. An antibody-graphene oxide nanoribbon conjugate as a surface enhanced laser desorption/ionization probe with high sensitivity and selectivity. Chem. Commun. 2015, 51, 4619−4622.
[56] Huang, R.-C.; Chiu, W.-J.; Lai, I. P.-J.; Huang, C.-C. Multivalent aptamer/gold nanoparticle-modified graphene oxide for mass spectrometry-based tumor tissue imaging. Sci. Rep. 2015, 5, 10292–10301.
[57] Lorey, M.; Adler, B.; Yan, H.; Soliymani, R.; Ekstrom, S.; Yli-Kauhaluoma, J.; Laurell, T.; Baumann, M. Mass-Tag Enhanced Immuno-Laser Desorption/Ionization Mass Spectrometry for Sensitive Detection of Intact Protein Antigens. Anal. Chem. 2015, 87, 5255−5262.
[58] Strasser, M.; Setoura, K.; Langbein U.; Hashimoto, S. Computational Modeling of Pulsed Laser-Induced Heating and Evaporation of Gold Nanoparticles J. Phys. Chem. C 2014, 118, 25748–25755.
[59] Link, S.; EI-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B, 1999, 103, 8410– 8426.
[60] Liu, Y.-C.; Chiang, C.-K.; Chang, H.-T.; Lee, Y.-F.; Huang, C.-C. Using a Functional Nanogold Membrane Coupled with Laser Desorption/Ionization Mass Spectrometry to Detect Lead Ions in Biofluids. Adv. Funct. Mater. 2011, 21, 4448–4455.
[61] Li, Y.-J.; Tseng, Y.-T.; Unnikrishnan, B.; Huang, C.-C. Gold-Nanoparticles-Modified Cellulose Membrane Coupled with Laser Desorption/Ionization Mass Spectrometry for Detection of Iodide in Urine. ACS Appl. Mater. Interfaces 2013, 5, 9161−9166.
[62] Chang, C.-Y.; Chu, H.-W.; Unnikrishnan, B.; Peng, L.-H.; Cang, J.; Hsu, P.-H.; Huang, C.-C. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications. APL Mater. 2017, 5, 053403.
[63] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B, 2006, 110, 7238 7248.
[64] Van Oss, C. J.; Good, R. J.; Chaudhury, M. K. Mechanism of DNA (Southern) and protein (Western) blotting on cellulose nitrate and other membranes. J. Chromatogra. A 1987, 391, 53–65.
[65] Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold nanocages: synthesis, properties, and applications. Accounts Chem. Res. 2008, 41, 1587–1595.
[66] Shang, L.; Dong, S.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 2011, 6, 401–418.

(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *