字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:周煒學
研究生英文姓名:Chou, Wei-Hsueh
中文論文名稱:吳郭魚-浮萍魚菜共生系統發展之考量:以浮萍做為不同大小吳郭魚之食物源及水處理植物
英文論文名稱:Consideration for the development of tilapia (Oreochromis spp.)-duckweed (Landoltia punctata) aquaponic system: The use of duckweed as food source for various tilapia sizes and water treatment
指導教授姓名:陳瑤湖
口試委員中文姓名:教授︰陳瑤湖
教授︰林豊益
教授︰賴弘智
助理教授︰陳永松
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學號:10433039
請選擇論文與海洋研究相關度:間接相關
請選擇論文為:應用型
畢業年度:106
畢業學年度:105
學期:
語文別:中文
論文頁數:59
中文關鍵詞:紅色吳郭魚浮萍魚菜共生
英文關鍵字:Oreochromis sppLandoltia punctataaquaponics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏收藏:0
本研究在於探討吳郭魚-浮萍魚菜共生的可行性而進行兩實驗:(一)以浮萍取代部分商用飼料對於水質及紅色吳郭魚成長之影響(二)不同魚隻大小對於紅色吳郭魚-浮萍魚菜共生系統水質及浮萍生長之影響。
(一) 本研究目的在於探討以浮萍取代一天飼料對魚隻成長及有無浮萍存在養殖系統對於水質之影響,實驗有三處理,A組為7天皆餵食飼料(桶中無培養浮萍),B組為6天餵食飼料及1天餵食新鮮浮萍(桶中無培養浮萍),C組為6天餵食飼料與1天餵食新鮮浮萍(桶中以箱網培養浮萍)。飼料使用35.83 % 粗蛋白質含量(CP)之商業飼料;新鮮浮萍(Landoltia punctata) 粗蛋白為35%(乾重)、水分則是92.5%,投餵量與所投餵飼料等蛋白量之新鮮浮萍。浮萍每週收穫一次(採集生產面積一半的量)。魚體初重為4.9±0.91 g,養殖12週。結果顯示三組之間在食物(飼料+浮萍)轉換率(Food conversion ratio , FCR2)有顯著差異,其分別為2.25、6.47、6.35,其餘在飼料轉換率(FCR1)、週比成長率(SGR)、增重率(WG%)等成長參數間皆無顯著差異。在水質方面,總氨氮、亞硝酸鹽等參數皆有顯著差異,濃度皆為A>B>C組,表明系統中有浮萍存在能有效降低水中營養物質含量,結果顯示以浮萍取代一天的商用飼料不會造成成長差異且能改善水質。
(二) 本研究目的在於探討紅色吳郭魚-浮萍之魚菜共生系統,魚的總初始放養生物量相同 (44.84±0.09 g),但魚的大小與尾數不同 (分別為5.61±2.38 g,8尾及11.20 ±1.17 g,4尾) 時,對於魚與浮萍之生產及水質的影響。此魚菜共生系統置放細目箱網,將網內的浮萍與魚隔離,然後每週一次將箱網內培養出的浮萍(Landoltia punctata),收穫一半,每週2天將之餵予吳郭魚,其他5天餵食飼料,1天不餵食,歷經8週,結果顯示結果顯示,小魚組在總末重、總增重量、增重率、週比成長率皆較大魚組高,在飼料轉換率、浮萍轉換率、食物轉換率及蛋白質效率則是小魚組優於大魚組。在水質方面,總氨氮、硝酸鹽等參數皆無顯著差異,顯示本實驗中不同大小的魚所產生的營養物質尚在浮萍吸收能力的範圍內。浮萍生產量則是在第5週後小魚組多於大魚組,根據結果,我們建議以小魚來進行生產會是最佳選擇。
Abstract
The aim of this study was to investigate the effect of feeding of commercial feeds and fresh duckweed on the growth of the fish, growth of the duckweed and its impact in water quality. The experiment is divided into two parts;(1) the duckweed to replace commercial feed, its effect on growth of Red tilapia and in water quality (2) different size of Red tilapia- duckweed fish symbiotic effect in duckweed growth and in water quality.
For experiment 1, the purpose of the study was to evaluate the use of duckweed as a replacement of the commercial feed on the fish growth and its effect in water quality. The experiment has three treatments with 3 replicates. Group A for 7 days feeding with commercial feed (no duckweed cage culture), group B and C, both fed with 6 days commercial feed and 1-day fresh duckweed. The difference between the two was for group B no duckweed cage culture inside the tank while group C has. Feed and fresh duckweed (CP: 35.00%; moisture: 92.5%) were fed at 3% of the body weight of the fish. Treatments were fed with the same protein content of 35.83%. Duckweeds was collected once a week (1/2 of the production area). The initial weight of fish was 4.9 ± 0.91 g and cultured for 12 weeks. The results showed that, there were significant differences in food conversion rates between the three groups, which were 2.25, 6.47 and 6.35, respectively. No significant difference was found in total final weight (TFW), total weight gain (TWG), survival rate (SR), feed conversion rate (FCR) and protein efficiency ratio (PER). The results showed that a day of feeding fresh duckweed will not cause growth differences. In terms of water quality, significant differences were found in total ammonia nitrogen (TAN), nitrite (NO2-N), nitrate (NO3-N) and phosphate (PO4-3). It indicates that, the existence of duckweed in the system can effectively reduce the nutrients in the water.
For experiment 2, the purpose was to evaluate the effect of different sizes of Red tilapia with the same biomass on the growth of duckweed and in water parameters. Treatments were consisted of two fish sizes: small (8 fish, average body weight: 5.61±2.38g) and medium-sized fish (4 fish, average body weight: 11.20 ±1.17g) with 3 replicates. The experiment was performed with 5 days feeding of commercial feed, 1-day feeding of fresh duckweed and 1-day without feeding and carried out for 8 weeks. The duckweed was collected once a week (1/2 area) and production was recorded. The results showed that, the small-sized fish group had the better growth performance in terms of TFW, TWG and SGR. Medium-sized fish group had the poor FCR and lowest PER. No difference was found in SR. For duckweed growth, small-sized fish had the highest duckweed production. No significant differences were also found among the water parameters, indicating that the nutrients produced by fish are still in the range of absorption capacity of duckweeds.
In conclusion, the feeding of commercial feed with duckweeds will not affect the growth performance of the fish. For the duckweed production, small-sized fish was recommended and the best choice.
目次
謝辭 i
中文摘要 ii
Abstract iv
目錄 vi
表目錄 xi
圖目錄 x
一、總前言 1
1-1 魚菜共生簡介 1
1-2 以浮萍取代部分商用飼料養殖吳郭魚的可行性評估 2
1-3 不同魚隻大小與水中養分對於吳郭魚-浮萍魚菜共生系統的影響 3
1-4 研究目的 4
二、實驗 Ⅰ 以浮萍取代部分商用飼料對於水質及紅色吳郭魚成長之影響 5
1. 摘要 5
2. 前言 5
2-1 吳郭魚之食性 6
2-2 吳郭魚之蛋白質需求 7
2-3 研究目的 8
3. 材料與方法 8
3-1 實驗設計 8
3-2 養殖生物 8
3-3 實驗環境 8
3-4 實驗條件 9
3-5 實驗飼料 9
3-6 實驗分析方法 9
3-6-1 水分測定 (Moisture) 9
3-6-2 粗蛋白質分析(Crude protein) 10
3-6-3 水之酸鹼值 (pH) 10
3-6-4 水之總氨氮 (Total Ammonia-Nitrogen, TAN) 10
3-6-5 水之硝酸氮 ( Nitrate-N, NO3--N ) 11
3-6-6 水之亞硝酸氮 (Nitrite-N, NO2--N) 11
3-6-7 水之磷酸鹽 (Phosphate, PO43-) 檢測 11
3-6-8 光照之光量子通量密度 PPFD (Photosynthetic Photon Flux Density) 12
3-7 魚成長及食物利用指標 12
3-7-1 增重百分率 (Weight gain %) 12
3-7-2 飼料轉換率 (Feed conversion ratio , FCR1) 12
3-7-3 食物轉換率 (Food conversion ratio , FCR2) 12
3-7-4 浮萍(濕重)轉換率 (Duckweed conversion ratio , DCR) 12
3-7-5 蛋白質利用效率 (Protein efficiency ratio, PER) 12
3-7-6 週比成長率 (Specific growth rate, SGR) 12
3-7-7 存活率 (Survival rate) 13
3-8 統計分析 13
4. 結果與討論 13
4-1 以浮萍取代部分飼料在紅色吳郭魚飼養期間成長表現 13
4-2 以浮萍取代部分飼料在紅色吳郭魚飼養期間水質變化 14
5.結論 15
三、實驗 Ⅱ 不同魚隻大小對於紅色吳郭魚-浮萍魚菜共生系統水質及浮萍生長與魚之影響 17
1. 摘要 17
2. 前言 17
2-1 吳郭魚-浮萍魚菜共生 18
2-2 吳郭魚大小攝食之差異 18
2-3 研究目的 19
3. 材料與方法 20
3-1 實驗設計 20
3-2 養殖生物 20
3-3 實驗環境 20
3-4 實驗條件 21
3-5 實驗飼料 21
3-6 實驗分析方法 21
3-6-1 水分測定 (Moisture) 21
3-6-2 粗蛋白質分析(Crude protein) 21
3-6-3 水之酸鹼值 (pH) 21
3-6-4 水之總氨氮 (Total Ammonia-Nitrogen, TAN) 21
3-6-5 水之硝酸氮 ( Nitrate-N, NO3--N ) 21
3-6-6 水之亞硝酸氮 (Nitrite-N, NO2--N) 22
3-6-7 水之磷酸鹽 (Phosphate ,PO43 -) 檢測 22
3-6-8 水之光量子通量密度 PPFD (Photosynthetic Photon Flux Density) 22
3-7 魚成長及食物利用指標 22
3-8 統計分析 22
4. 結果與討論 22
4-1 不同魚體大小對於紅色吳郭魚-浮萍魚菜共生系統浮萍與魚生長之影響 22
4-2 不同魚體大小對於紅色吳郭魚-浮萍魚菜共生系統水質之影響 24
5.結論 26
四、總結論 27
參考文獻 44
附錄 56
附錄一 實驗I之C 組培養浮萍裝置 56
附錄二 實驗I之畜養魚苗之情形 57
附錄三 實驗II系統建置 58
附錄四 實驗II培養浮萍設置 59


圖次
實驗I:圖一 TAN濃度在12週中之變化 34
實驗I:圖二 NO2--N濃度在12週中之變化 35
實驗I:圖三 NO3--N濃度在12週中之變化 36
實驗I:圖四 TN濃度在12週中之變化 37
實驗I:圖五 PO43-濃度在12週中之變化 38
實驗II:圖一 TAN濃度在8週中之變化 39
實驗II:圖二 NO2--N濃度在8週中之變化 40
實驗II:圖三 NO3--N濃度在8週中之變化 41
實驗II:圖四 TN濃度在8週中之變化 42
實驗II:圖五 PO43-濃度在8週中之變化 43


表次
實驗I:表一 吳郭魚需求胺基酸與浮萍提供之胺基酸 28
實驗I:表二 紅色吳郭魚三種餵食處理經12週後,其存活率、總初重、總末重、總增重量、個體初重、個體末重、增重率以及週成長比率 29
實驗I:表三 紅色吳郭魚三種餵食處理之飼料效益 30
實驗II:表一 不同體型紅色吳郭魚8週養殖生長效益 31
實驗II:表二 不同體型但同生物量紅色吳郭魚8週養殖成長表現 32
實驗II:表三 經8週養殖之浮萍生長表現 33
于昌江、朱明、馬玉彬、于麗、周功克 (2014)。新型能源植物浮萍的研究進展。 生命科學,26(005),458-464。
王輝、強俊、李瑞偉、彭俊(2010)。短期饑餓對奧尼羅非魚幼魚生長和幾種消化酶的影響。廣東海洋大學學報,30(1),7-12。
江麗芬,2010。飼料蛋白質種類對吳郭魚成長及攝食後血液游離胺基酸變化的影響–II。碩士論文:國立高雄海洋科技大學。
季書林,2010。兩種不同比例的蛋白質與脂質飼料以三種不同量投餵對吳郭魚成長、體組成和血液生化値之效應。碩士論文:國立臺灣海洋大學。
陳瑤湖、梁榮元,2016。魚菜共生體系發展研究與展望。農業生技產業季刊,46,43-51。
蕭錫延、林崇興、林清龍、丁雲源、郭河,1988。魚病專輯-虱目魚、吳郭魚營養需要疾病及飼養管理。台灣養猪科學研究所,竹南。
鮑達山,2005。以浮萍及其粉、米麩、及血粉做為吳郭魚初級飼糧源的研究。碩士論文:國立臺灣海洋大學。
Abdel-Tawwab, M., Ahmad, M.H., Khattab, Y.A.E., Shalaby, A.M.E., 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298, 267-274.
Alaerts, G.J., R. Mahbubar, and Kelderman, P., 1996. Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Research, 30, 843-852.
Al-Hafedh, Y.S., 1999. Effects of dietary protein on the growth and body composition of Nile Tilapia, L. Aquaculture Research, 30, 385-393.
Al-Hafedh, Y.S., Aftab, A. and Beltagi, M.S., 2008. Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. Journal of the World Aquaculture Society, 39(4), 510-520.
Almazan, G.J., Pullin, R.S.V., Angeles, A.F., Manalo, T.A., Agbayani, R.A., and Trono, M.T.B., 1986. Azolla piñata as a dietary component for Nile tilapia, Oreochromis niloticus, p. 523-528. In Maclean, J.L. and Hosillos, L.V. (eds.) The First Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines.
Antoine, T., Carraro, S., Micha, J.C., and Van Hove, C., 1986. Comparative appetency for Azolla of Cichlasoma and Oreochromis (Tilapia). Aquaculture, 53, 95-99.
AOAC. (Association of Official Analytical Chemists), 1995. Official Method of Analysis, 16th edition. AOAC Washington, DC. USA.
Armstrong, D.A., 1979. Nitrogen toxicity to crustacea and aspects of its dynamics in culture system. In: Lewis, D. and Ling, J. (Eds.), 2nd Biennial Crustacean Health Workshop. Texax, A. & Grant, M.S., Tammse-SE-79-114, 329-360.
Avnimelech. Y. and Lacher, M. 1979. A tentative nutrient balance for intensive fish ponds. Bamidgeh, 31, 3-8.
Bahnasawy, M.H., 2009. Effect of dietary protein levels on growth performance and body composition of monosex Nile Tilapia, Oreochromis niloticus L. reared in fertilized tanks. Pakistan Journal of Nutrition, 8, 674-678.
Bairagi, A., Sarkar-Ghosh, K., Sen, S.K. and Ray, A.K., 2002. Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresource Technology, 85, 17-24.
Bergmann, B.A., Cheng, J., Classen, J. and Stomp, A.M., 2000. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technology, 73, 13-20.
Beveridge, M.C.M. and Baird, D.J. 2000. Diet, feeding and digestive physiology, pp. 59-87. In: Beveridge, M.C.M., McAndrew, B.J. (Eds.) Tilapias: Biology and Exploitation. Stirling, University of Stirling.
Brown, P.B. and Twibell, R.G., 1998. Optimal dietary protein for hybrid Tilapia Oreochromis niloticus x Oreochromis aureus fed all-plant diets. Journal of the World Aquaculture Society, 29, 9-16.
Caicedo, J.R., van der Steen, N.P, Arca, O. and Gijzen, H.J., 2000. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrhiza). Water Research, 15, 3829-3835.
Cheng, J., Bergmann, B.A., Classen, J.J., Stomp, A.M. and Howard, J.W., 2002. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technology, 81, 81-85.
Chien, Y.H. and Ray, W.M., 1990. The effects of stocking density and presence of sediment on the survival and growth of tiger prawn, Penaeus monodon, fry. P. 109-112 in R. Hirano and I. Hanyu (eds.) The Second Asian Fisheries Forum. 991 p. Asian Fisheries Society, Manila, Philippines.
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P. and Verstraete, W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270, 1-14.
Crab, R., Defoirdt, T., Bossier, P. and Verstraete, W., 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 2, 356-357.
Dalu, J.M. and Ndamba, J., 2003. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe). Physics and Chemistry of the Earth, 28, 1147-1160.
De-Silva, S.S., Gunasekera, R.M. and Atapattu, D., 1989. The dietary protein requirements of young tilapia and an evaluation of the least cost dietary protein level. Aquaculture 3, 271-281.
Diver, S., 2006. Aquaponics-Intergration of Hydroponics with Aquaculture. National Sustainable Agriculture Information Service.1-800-346-9140, 1-28.
Edwards, P., Hassan, M.S., Chao, C.H., and Pacharaprakiti, C., 1992. Cultivation of duckweeds in septage-loaded earthen ponds. Bioresource Technology, 40, 109-117.
El-Sayed, A.F., 2006. Tilapia Culture. Wallingford, Oxfordshire: Cabi Publishing, 95-111.
El-Sayed, A.F.M., 1999. Alternative dietary protein sources for farmed tiapia, Oreochromis spp. Aquaculture, 179, 149-168.
El-Sayed, A.F.M., and Teshima, S., 1992. Protein and energy requirement of Nile tilapia Oreochromis niloticus, fry. Aquaculture, 103, 55-63.
El-Sayed, A.M., Mansour, C.R. and Ezzat, A.A., 2003. Effects of dietary protein levels on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock reared at different water salinities. Aquaculture, 220, 619-632.
El-Shafai, S.A., El-Gohary, F.A., Verreth, J.A.J., Schrama, J.W., and Gijzen, H. J., 2004. Apparent digestibility coefficient of duckweed (Lemna minor), fresh and dry for Nile tilapia (Oreochromis niloticus L.) Aquaculture Research, 35, 574-586.
Fasakin, E.A., 1999. Nutrient quality of leaf protein concentrates produced from water fern (Azolla africana Desv) and duckweed (Spirodela polyrrhiza L. Scheiden) Bioresource Technology, 69, 185-187.
Fiogbe, E.D., Micha, J.C., and Van Hove, C., 2004. Use of a natural aquatic fern, Azolla microphylla, as a main component in food for the omnivorous– phytoplanktonophagous tilapia, Oreochromis niloticus L., Journal of Applied Ichthyology, 20, 517-520.
Gaigher, I.G., Porath, D. and Granoth, G., 1984. Evaluation of duckweed (Lemna gibba) as feed for tilapia (Oreochromis niloticus cross Oreochromis aureus) in a recirculating unit. Aquaculture, 41, 235-244.
Graham-Glicksman, G., Haynor, S., Williams, T., Lanza, N., Lemoreau, R., Sasek, L. and Bender, G. 2009. Alternative Growing Mediums and Nutrient Sources in Aquaponics. Fisheries Conservation Foundation. [Homepage of Central Institute of Fisheries Technology]. [Online]. Available: http://www.fishconserve.org/ar-cel/admin/uploads/FPLP109.pdf.
Gunasekera, R.M., Shim, K.F. and Lam, T.J., 1996. Effect of dietary protein level on spawning performance and amino acid composition of eggs of Nile tilapia, Oreochromis niloticus (L). Aquaculture, 146, 121-134.
Hanczakowski, P., Szymczyk, B., and Wawrzynski, M., 1995. Composition and nutritive value of sewage-grown duckweed (Lemna minor L.) for rats. Animal Feed Science and Technology, 52, 339-343.
Hanley, F., 1987. The digestibility of foodstuffs and the effects of feeding selectivity on digestibility determinations in tilapia, Oreochromis niloticus. Aquaculture, 66, 167-179.
Hassan, M.S. and Edwards, P., 1992. Evaluation of duckweed (Lemna perpusilla and Spirodela polyrrhiza) as feed for Nile Tilapia (Oreochromis niloticus). Aquaculture, 104, 315-326.
Hayashi, H., Sakamoto, M. and Benno, Y., 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiology and Immunology, 46, 819-831.
Hepher, B. and Pruginin, Y. 1979. Guide to fish culture in Israel. 4. Fertilization, manuring and feeding. Foreign Training Dept., Israel.
Hollerman, W.D. and Boyd, C.E. 1985. Effects of annual draining on water quality and production of channel catfish in ponds. Aquaculture, 46, 45-53.
Hu, Z., Lee, J.W., Chandran, K., Kim, S., Brotto, A.C. and Khanal, S.K., 2015. Effect of plant species on nitrogen recovery in aquaponics. Bioresource Technology, 188, 92-98.
Jauncey, K. and Ross, B. 1982. A Guide to Tilapia Feeds and Feeding. University of Stirling, Scotland.
Jauncey, K., Tacon, A.C.J. and Jackson, A.J., 1983. The quantitative essential amino acid requirements of Oreochromis (Sarotherodon)mossambicus. In: Fishelson, J., Yaron, Z. (eds.). Proc. 1st Intl. Symp.On Tilapia in Aquaculture. Tel. Aviv. Univ., Tel Aviv. Israel. 328-337.
Jimenez-Montealgegre, R., 2001. Nitrogen transformation and fluxes in fish ponds: a modeling approach. PH. D. Dissertation, Wageningen University. The Netherlands, 185.
Jobling, M., Meloy, O.H., Dos Santos, J. and Christiansen, B. 1994. The compensatory growth response of the Atlantic cod: effects of nutritional history. Aquacult Int. 2, 75-90.
Korner, S., Lyatuu, G.B. and Vermaat, J.E., 1998. The influence of Lemna gibba L. on the degradation of organic material in duckweed-covered domestic wastewater. Water Research, 32, 3092-3098.
Krishna, K.C.B. and Polprasert, C., 2008. An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system. Ecological Engineering, 34 (3), 243-250.
Lemon, G.D., Posluszny, U. and Husband, B.C., 2001. Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquatic Botany, 70, 79-87.
Leng, R.A., Stambolie, J.H., and Bell, R., 1995. Duckweed – a potential high-protein feed resource for domestic animals and fish. Livestock Research for Rural Development, 7, 1-32.
Liang, J.Y. and Chien, Y.H., 2013. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia-water spinach raft aquaponic system. International Biodeterioration and Biodegradation, 85, 693-700.
Liu, C.C.K., Xia, W. and Park J.W., 2007. A wind-driven reverse osmosis system for aquaculture wastewater reuse and nutrient recovery. Desalination, 202, 24-30.
Luquet, P., 1989. Practical considerations on the protein nutrition and feeding of tilapia. Aquatic Living Resources, 2, 99-104.
Luquet, P., 1991. Tilapia, Oreochromis spp. In Wilson, R.P. (Ed.), Handbook of nutrient requiremnts of finfish. Boca Raton, Florida: CRC Press Inc. 169-179.
Men, B.X., Ogle, B. and Preston, T.R., 1996. Use of duckweed (Lemna spp) as replacement for soya bean meal in a basal diet of broken rice for fattening ducks. Livestock Research for Rural Development, 7, 18-25.
Men, L.T., Van, B.H., Chinh, M.T. and Preston, T.R., 1997. Effect of dietary protein level and duckweed (Lemna spp) on reproductive performance of pigs fed a diet of ensiled cassava root or cassava root meal. Livestock Research for Rural Development, 9, 1-7.
Micha, J.C., Antoine, T., Wery, P. and Hove, C., 1988. Growth, ingestion capacity, comparative appetency and biochemical composition of Oreochromis niloticus and Tilapia rendalli fed with Azolla. In: Pullin, R.S.V., Bhukaswan, T., Tonguthai, K., Maclean, J.L. (Eds.), 2nd Intl. Symp. On Tilapia in Aquaculture. ICLARM Conf. Proc. No. 15, Manilla, Philippines, 347-355.
Miglavs, I. and Jobling, M. 1989. The effect of feeding regime on proximate body composition and patterns of energy deposition in juvenile Arctic charr, Salvelinus alpinus. J Fish Biol. 35, 1-11.
Nguyen, D.A. and Preston, T.R., 1998. Effect of exchange rate of the medium (water and biodigester effluent) on biomass yield and composition of duckweed. Livestock Research for Rural Development, 10, 11-16.
NRC (National Research Council), 1993. Nutrient requirement of fishes.
Popma, T. and Masser, M., 1999. Tilapia: Life History and Biology. SRAC Publication, 283, 1-4.
Rafiei, G.R., Saad, C.H.R., Kamarudin, M. S., Ismail, M.R. and Alavi, S.M.H., 2006. Estimation of ammonia excretion rates during a period of Red tilapia, Oreochromis sp. culture, considering biomass increase in a water recirculating system. Iranian Journal of Fisheries Science, 6, 69-82.
Rakocy, J., 2007. Ten guidelines for aquaponic systems. Aquaponics Journal, 46, 14-17.
Rakocy, J.E., Masser, M.P. and Losordo, T.M., 2006. Recirculating aquaculture tank- production systems: aquaponics-integrating fish and plant culture. Southern Regional Aquaculture center Publication no. 454, Stoneville, Ms, 16.
Rakocy, J.E., Shultz, R.C., Bailey, D.S. and Thoman, E.S., 2004. Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. Acta Horticulturae (ISHS) 648, 63-69.
Robinette, H.R., Brunson, M.W. and Day, E.J. 1980. Use of duckweed in diets of channel catfish. Proc. 13th Ann. Conf. SE Assoc. Fish Wildlife Age, 108-114.
Rusoff, L.L., Blakeney, E.W. and Culley, D.D., 1980. Duckweeds (Lemnaceae Family): A Potential Source of Protein and Amino Acids. Journal of Agricultural and Food Chemistry, 28, 848-850.
Santiago, C.B. and Lovell, R.T., 1988. Amino acid requirement for growth of Nile Tilapia. Journal of Nutrition, 118, 1540-1546.
Schwartz, D.P. and Maughan, O.E., 1984. The feeding preferences of Tilapia aurea (Steindachner) for five aquatic plants. Proceedings of the Oklahoma Academy of Science, 64, 14-16.
Seidl, M., Laouali, S., Idder, T. and Mouchel, J.M., 2003. Duckweed-Tilapia system: a possible way of ecological sanitation for developing countries. IWA conference AGUA 2003 29 septembre - 3 octobre 2003, Cartagena de Indias, Colombia. Multiple uses of water for life and sustainable development, 1-8.
Shrestha, M.K. and Yadav, C.N.R. 1998. Feeding of napier (Pennisetum purpureum) to grass carp in polyculture: A sustainable fish culture practice for small farmers. Asian Fisheries Science, 11, 287-294.
Siddiqui, A.Q., Al-Hafedh, Y.S. and Ali, S.A., 1998. Effect of dietary protein level on the reproductive performance of Nile tilapia, Oreochromis niloticus (L). Aquaculture Research, 29, 349-358.
Skillicorn, P., Spira, W. and Journey, W., 1993. Duckweed Aquaculture. A new aquatic farming system for developing countries. The World Bank, Washington, DC, 76.
Solorzano, L., 1969. Determination of ammonia in nature waters by the phenol hypochlorite method. Limnology and Oceanography, Limnol Oceanogr, 14, 700-801.
Spinelli, J., Houle, C. and Wekell, J.C., 1983. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture, 30, 71-83.
Sweilum, M.A., Abdella, M.M. and El-Din, S.A.S., 2005. Effect of dietary protein- energy levels and fish initial sizes on growth rate, development and production of Nile tilapia, Oreochromis niloticus L. Aquaculture Research, 36, 1414-1421.
Sylvia, B., 2011. Aquaponic gardening: a step-by-step guide to raising vegetables and fish together. New Society Publishers.
Tapia-Salazar, M., Smith, T.K., Harris, A., Ricque-Marie, D. and Cruz-Suarez, L.E., 2001. Effect of dietary histamine supplementation on growth and tissue amine concentration in blue shrimp Litopenaeus stylirostris. Aquaculture c, 193, 281-289.
Trang, N.T.D. and Brix, H., 2014. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the mekong delta, vietnam. Aquaculture Research, 45(3), 460-69.
Van Der Steen, P., Brenner, A. and Oron, G., 1998. An integrated duckweed and algae pond system for nitrogen removal and renovation. Water Science and Technology, 38, 335-343.
Van-Dyke, J.M. and Sutton, D.L. 1977. Digestion of duckweed (Lemna spp) by the grass carp (Ctenopharyngodon ldella). Journal of Fish Biology, 11, 273-278.
Vermaat, J.E. and Hanif, M.K. 1998. Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Research, 32(9), 2569-2576.
Winfree, R.A. and Stickney, R.R., 1981. Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea. Journal of Nutrition, 111, 1001-1012.
Xie, S., Cui, Y., Yang, Y., Liu, J., 1997. Effect of body size on growth and energy budget of Nile tilapia, Oreochromis niloticus. Aquaculture, 157, 25-34.
Xu J, Shen G. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technology, 2011, 102(2): 848-53
Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M. and Sager, J.C. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. Horticultural Science, 36, 380-383.
Zamal, H. and Ollevier, F. 1995. Effect to feeding and lack to food on the growth, gross biochemical and fatty acid composition of juveniles catfish. J. Fish Biol., London, 46, 404-414.
Zhao, Y., Fang, Y., Jin, Y., Huang, J., Bao, S., Fu, T., He, Z., Wang, F. and Zhao, H. 2014. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth. Bioresource Technology, 163, 82-91.
(此全文20200719後開放外部瀏覽)
電子全文
全文檔開放日期:2020/07/19
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *