字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:蔡智哲
研究生英文姓名:Chih-Che Tsai
中文論文名稱:野生瓜子鱲與不同飼料投餵之養殖瓜子鱲生化學組成之差異及其貯藏安定性之評估
英文論文名稱:Comparison on biochemical compositions of wild blackfish (Girella punctata) and those cultured with different diets and the evaluation of storage stability
指導教授姓名:蕭泉源
口試委員中文姓名:業界委員︰蔡慧君
副教授︰冉繁華
副教授︰陳泰源
業界委員︰劉馨嵐
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10432053
請選擇論文為:學術型
畢業年度:106
畢業學年度:105
學期:
語文別:中文
論文頁數:77
中文關鍵詞:瓜子鱲養殖野生飼料生化學組成鮮度指標貯存安定性
英文關鍵字:Girella punctataculuturedwildfeedingbiochemical compositionfreshness index
相關次數:
  • 推薦推薦:0
  • 點閱點閱:100
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏收藏:0
瓜子鱲(Girella punctata)屬高商業價值的新興養殖魚種,生化學組成特性之研究甚少,故擬分析飼料對其成長期間魚肉化學組成分之影響,比較野生與養殖魚肉化學組成之差異,並探討其貯藏期間各項鮮度指標與化學成分之變化,以了解其貯藏安定性。成長試驗期間瓜子鱲肥滿度與魚體體重具相關性,而肝體比則與體重之相關性小,各組別之pH 值、總核苷酸相關化合物與一般成分包括水分、粗蛋白和灰分含量與控制組差異甚小,但脂肪含量下降,而總游離胺基酸含量則有上升趨勢。養殖瓜子鱲之肥滿度與粗脂肪含量顯著高於野生魚,兩者肝體比無顯著差異;養殖瓜子鱲之總游離胺基酸含量為396 mg/100 g,遠較野生魚之189 mg/100 g高,野生魚個別胺基酸以牛磺酸 (Taurine, Tau)、甘胺酸 (Glycine, Gly)、丙胺酸 (Alanine, Ala)、離胺酸 (Lysine, Lys) 及脯胺酸 (Proline, Pro) 含量居多,其中 Tau 為主要胺基酸,而養殖魚個別胺基酸以 Tau、羥丁胺酸 (Threonine, Thr)、絲胺酸 (Serine, Ser)、Gly、Ala、Lys、His 及 Pro 含量居多,其中 Gly 為主要胺基酸;野生與養殖瓜子鱲之主要脂肪酸皆為棕櫚酸 (Palmitic acid, C16:0)、油酸 (Oleic acid, C18:1) 及 DHA (Docosahexaenoic acid, C22:6) ,而養殖魚含有較高比例之單元不飽和脂肪酸 (Monounsaturated fatty acid, MUFA)。呈味成分之肌苷酸 (Inosine 5’ –monophosphate, IMP) 為死後肌肉主要蓄積之核苷酸相關化合物,養殖瓜子鱲含量8.31 μmole/g,顯著高於野生魚之 4.95 μmole/g。將瓜子鱲肉貯藏於 25℃ 下,pH 值有逐漸上升之趨勢,而 4℃ 貯藏下則先下降再上升;25℃ 貯藏下氨含量隨著時間增加而逐漸上升,至 48 小時達 25.71 mg/100 g,於 4℃ 貯藏下氨含量變化不大;初始好氧性總生菌數 (Total plate count, TPC) 為 2.48 log CFU/g,隨著貯藏時間增加而逐漸上升,於 25℃ 儲藏至24 小時達 6.73 log CFU/g,超出限量標準 (6.48 log CFU/g),4℃貯藏 12 天則達 4.04 log CFU/g,則未超過限量標準;起始揮發性鹽基態氮 (Volatile basic nitrogen, VBN) 含量為 7.64 mg/100 g,隨著時間增加而上升,於 25℃ 儲藏至16 小時達 33.62 mg/100 g,4℃貯藏至第 9 天則達 53.03 mg/100 g,超過限量標準之25 mg/100 g;於 25℃ 貯藏至 8小時 K 值急遽上升達 84.95%,4℃ 貯藏第 3 天達 65.22% ,已超過 60%,鮮度不佳。氨含量、VBN、Hypoxanthine 及 K 值皆隨貯藏時間增加而上升,可作為瓜子鱲肉之鮮度指標,依感官檢測、TPC與 VBN 含量可判斷瓜子鱲肉於 25℃ 貯藏期限約為 8 小時、4℃ 約為 6 天。
Black fish (Girella punctata) is an important newly culutured fish with high economic value, but biochemical compositions remain unknown. Therefore, this study was designed to investigate the effect of fermented soybean as feeding source on biochemical compositions of fish meat, the difference in compositions between wild and cultured black fish, and the changes in compositions and fressness indicators during storage. The condition factor showed a positive correlation with fish weight during growth, but there was no significant correlation between hepatosomatic index and body weight. No significant difference in pH value, nucleotide-related compounds (NRC), moisture, ash and crude protein were found between cultured fish fed with soybean and control group during growth. However, cultured fish had lower crude fat than control group, but had higher free amino acids (FAAs). The condition factor of wild blackfish was significantly lower than that of cultured fish. However, the cultured blackfish had higher fat content than wild fish. There were no significant differences in moisture, protein and ash contents between cultured and wild fish. The total FAAs content in cultured blackfish were significantly higher than those of wild fish. Taurine was the most prominent FAA in wild balckfish, while glycine was predominant in cultured fish. Results suggest that soybean meal as feeding source for fish could increase the content of total FAAs. Cultured blackfish also has higher content of monounsaturated fatty acids. The major NRC in the muscle was inosine monophosphate (IMP) in both wild and cultured blackfish. Moreover, IMP in cultured backfish was significantly higer than wild fish. The initial total plate count (TPC) was 2.48 log CFU/g, and increased with storage time. TPC increased to 6.73 CFU/g during storage at 25℃ for 24 hours, and 4.04 CFU/g at 4℃ for 12 days. The value of volatile basic nitrogen (VBN) increased with storage time, and exceeded the limit value of 25 mg/100 g at 25℃ storage for 16 hours and 4℃ for 9 days, respectively. In addition, ammonia and K value increased with storage time. According to organoleptic evaluation, TPC and VBN value, the shelf-life of wild blackfish was 8 hours at 25℃ storage and 6 days at 4℃ storage, respectively.
摘要.... ............................................................................................................................I
Abstract II
目次.................. III
表次..... VI
圖次........ VII
壹、 研究背景與目的 1
貳、 文獻整理 2
一、 瓜子鱲簡介 2
(一) 分類與分佈 ................................................................................................2
(二) 形態構造 ...................................................................................................2
(三) 生活習性 ...................................................................................................3
(四) 瓜子鱲養殖與利用 ....................................................................................3
二、 飼料對魚類成長之影響 ............................................................................4
(一) 蛋白質之影響 ............................................................................................4
(二) 脂質之影響 ................................................................................................5
(三) 大豆粉之影響 ............................................................................................6
(四) 發酵豆粉之影響 ........................................................................................7
三、 魚介類之萃取物與呈味成分 7
(一) 游離胺基酸 ................................................................................................8
(二) 核苷酸及其相關化合物 ............................................................................9
(三) 四級胺鹽基化合物 ...................................................................................9
(四) 醣類 ............................................................................................................9
四、 脂肪酸 10
五、 魚介類之鮮度判定指標 10
(一) pH值 ........................................................................................................11
(二) 揮發性鹽基態氮 ......................................................................................11
(三) K 值 .........................................................................................................11
(四) 總生菌數 ..................................................................................................12
參、 材料與方法 13
一、 實驗材料與儀器 13
(一) 原料魚 ......................................................................................................13
(二) 化學試藥 ..................................................................................................13
(三) 儀器設備 ..................................................................................................14
二、 實驗架構 15
(一) 不同飼料對養殖瓜子鱲成長期間生化學組成之影響 15
(二) 野生與養殖瓜子鱲之生化學組成差異 16
(三) 野生瓜子鱲死後貯藏期間生化學組成之變化 17
三、 實驗項目 18
(一) 不同飼料對養殖瓜子鱲成長期間生化學組成之影響 18
1. 樣品來源與處理 18
2. 分析項目 19
(二) 野生與養殖瓜子鱲之生化學組成差異 19
1. 樣品來源與處理 19
2. 分析項目 19
(三) 瓜子鱲死後貯藏期間生化學組成之變化 19
1. 採樣時間點 19
2. 分析項目 20
四、 分析方法 20
(一) 肥滿度 (Condition factor, CF) ................................................................20
(二) 肝體比 (Hepatosomatic index, HSI) .......................................................20
(三) pH 值 .......................................................................................................20
(四) 一般成分 (Proximate composition) ........................................................20
(五) 核苷酸相關化合物與 K 值 ...................................................................21
(六) 游離胺基酸、雙胜肽、尿素與氨 ..........................................................22
(七) 脂肪酸 ......................................................................................................22
(八) 揮發性鹽基態氮 (Volatile basic nitrogen, VBN) ..................................23
(九) 好氧性總生菌數 (Total plate count, TPC) .............................................24
(十) 感官檢測 ..................................................................................................24
五、 統計分析 24
肆、 結果與討論 25
一、 養殖實驗飼料之游離胺基酸組成 25
二、 不同飼料對養殖瓜子鱲成長期間化學組成與含量之影響 25
(一) 養殖魚體重、體長、肥滿度及肝體比 25
(二) 一般成分 26
(三) pH值與氨 26
(四) 游離胺基酸 26
(五) 核苷酸相關化合物 27
三、 野生與養殖瓜子鱲之生化學組成差異 27
(一) 體重、體長、肥滿度及肝體比 27
(二) 一般成分 27
(三) pH值與氨 28
(四) 游離胺基酸 28
(五) 脂肪酸 29
(六) 核苷酸相關化合物 30
四、 野生瓜子鱲貯藏期間品質鮮度與化學組成之變化 30
(一) pH值與氨 30
(二) 好氧性總生菌數 31
(三) 揮發性鹽基態氮 31
(四) 游離胺基酸 31
(五) 核苷酸相關化合物與 K 值 32
(六) 感官檢測 33
伍、 結論 34
陸、 參考文獻 35

王興春,2014。斑魢胚胎發育初步觀察。海洋漁業,36(1),1-7。
付世建、謝小軍、張文兵、曹振東,2001。南方鯰的營養學研究:飼料脂肪對蛋白質的節約效應。水生生物學報,25(1),70-75。
何碧月、陳紫媖,2011。大豆粉在水產飼料中的利用。水試專訊,34,48-50。
余廷基、董聰彥,1992。黃帶瓜子鱲繁殖試驗。潮訊,42,10-12。
吳國銘,2005。海洋微藻 Isochrysis sp. CCMP1324 對於吳郭魚雉魚生長期中 omega-3 多元不飽和脂肪酸含量之影響。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
吳清熊、邱思魁,1996。水產食品學。國立編譯館,台北。
呂庭宜,2015。鱘魚 (Acipenser baerii × A. schrenckii) 之化學組成特性及其貯藏期間之變化。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
李家璞,1996。鹽鯖品質風味改善之研究。國立臺灣海洋大學水產食品科學系碩士學位論文,基隆。
李棟樑、何碧華、鄭世龍、廖一九,1989。東港沿岸草蝦 (Penaeus monodon) 筋肉中可溶出性抽出物的季節變化。台灣水產學會刊,16,281-291。
林一和,2015。太平洋雙色鰻貯藏期間化學組成變化及肌肽安定性之探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
林陽山、陳明造,1991。蛋白質營養與屠體品質。飼料營養雜誌,6,3-18。
邱思魁、林君霏、蕭泉源,1996。養殖文蛤儲藏中的鮮度品質變化。中華民國營養學會雜誌,21,95-109。
邵廣昭、陳靜宜,2001。海洋生物。交通部觀光局馬祖國家風景管理處。
孫泰恒,1991。最新水產食品學。財團法人徐氏基金會,台北。
曹馨,2014。溫度與包裝對象牙鳳螺 (Babylonia areolate) 儲藏期間化學組成與鮮度品質之影響。國立台灣海洋大學食品科學系碩士學位論文,基隆。
莊健隆、林崇興、洪平、許福來,1992。魚類營養及飼料學概要 (上冊)。國立編譯館,台北。
莊健隆、林瑞堂、蕭泉源,2007。養殖海鱺成長期間化學組成與體重之關係。台灣水產學會刊,34,21-30。
許閔閔,2011。龍膽石斑之化學組成特性及其貯存變化。國立台灣海洋大學食品科學系碩士學位論文,基隆。
郭鴻均,1997。低水分活性食品之指標。海大漁推,21,21-35。
陳舜、蕭雲樸,2008。南麂列島海域黑魢網箱養殖試驗初報。水產科技情報,35(1),1-8。
農糧統計資料庫,2015。行政院農業委員會農糧署,台北。
漁業署,2015。漁業署重要措施及成果。行政院農業委員會漁業署,台北。
趙仲昆、謝恆毅,2012。寒冬的嬌客-黑、白毛。水試所電子報,80,行政院農業委員會水產試驗所,基隆。
劉富光,2008。魚類飼料的營養問題與研發策略 (上)。水試專訓,21:21-25。
標檢局,1995。中華民國國家標準 (CNS) 。51年04月27日大豆粕 (飼料用) CNS 1417公告。
標檢局,1995。中華民國國家標準 (CNS) 。52年09月05日魚粉 (飼料用) CNS 22437公告。
蔡政霖,2016。雜交鮑 (Haliotis discus hannai × H. diversicolor diversicolor) 之化學組成特性及殺菁與貯藏對其鮮度品質之影響。國立台灣海洋大學食品科學系碩士學位論文,基隆。
衛福部,2013a。生食用品食品類衛生標準,部授食字第1021350146號令公告。行政院衛生福利部食品藥物管理署,台北。
衛福部,2013b。冷凍食品類衛生標準。部授食字第1021350146號令公告。行政院衛生福利部食品藥物管理署,台北。
衛福部,2013c。食品微生物之檢驗法-生菌數之檢驗。部授食字第1021950329號公告修正。行政院衛生福利部食品藥物管理署,台北。
鄭惠珠,2013。野生條石鯛與不同飼料投餵之養殖條石鯛化學組成之差異及其貯藏期間之變化。國立台灣海洋大學食品科學系碩士學位論文,基隆。
鄭聰旭,1993。食品衛生標準之訂定。食品工業,25,28-35。
盧光胤,2016。瓜子鱲種魚繁殖表現評估及大豆粉與發酵豆粉取代魚粉對瓜子鱲幼魚成長之影響。國立台灣海洋大學水產養殖學系碩士學位論文,基隆。
蕭新泉,2000。飼料中不同油脂含量與來源及卵磷脂對石斑魚稚魚成長與活存之影響。國立台灣海洋大學水產養殖學系碩士學位論文,基隆。
A.O.A.C., 1998. Official methods of analysis, 16th Ed. Association of Official Analytical Chemists, Washington D.C., USA.
Abe, H., Dobson, G. P., Hoeger, U., and Parkhouse, W. T., 1985. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 249(4): 449-454.
Ahmad, M.H. and Abdel-Tawwab, M., 2011. The use of caraway seed meal as a feed additive in fish diets: Growth performance, feed utilization, and whole-body composition of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Aquaculture 314:110-114.
Aksnes, A. and Mundheim, H., 1997. The impact of raw material freshness and processing temperature for fish meal on growth, feed efficiency and chemical composition of Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 149(1): 87-106.
Alasalvar, C., Taylor, K. A., and Shahidi, F., 2002. Comparative quality assessment of cultured and wild sea bream (Sparus aurata) stored in ice. Journal of Agricultural and Food Chemistry 50(7): 2039-2045.
Alasalvar, C., Taylor, K. D. A., Zubcov, E., Shahidi, F., and Alexis, M., 2002. Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food Chemistry 79(2): 145-150.
Alava, V. R. and Kanazawa, A., 1996. Effect of dietary fatty acids on growth of milkfish Chanos chanos fry in brackish water. Aquaculture 144(4): 363-369.
Amono, h., Fujiyoshi, T., and Noda, N., 1989. Change on free histidine and anserine levels in the muscle of starved whitefish (Coregonus muksun). Bulletin of the Japanese Society for the Science of Fish 55: 373-379.
Anderson, J. S., Higgs, D. A., Beames, R. M., and Rowshandeli, M., 1997. Fish meal quality assessment for Atlantic salmon (Salmo salar L.) reared in sea water. Aquaculture Nutrition 3(1): 25-38.
Aoki, T., Takada, K., and Kunisaki, N., 1991. On the study of proximate composition, mineral, fatty acid, free amino acid, muscle hardness, and color difference of six species of wild and cultured fishes. Bulletin of the Japanese Society of Scientific Fisheries 57: 1927-1934.
Arzel, J., Lopez, F. X. M., Métailler, R., Stéphan, G., Viau, M., Gandemer, G., and Guillaume, J., 1994. Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) reared in seawater. Aquaculture 123: 361-375.
Ashie, I. N. A., Smith, J. P., Simpson, B. K., and Haard, N. F., 1996. Spoilage and shelf‐life extension of fresh fish and shellfish. Critical Reviews in Food Science and Nutrition 36: 87-121.
Azarm, H. M. and Lee, S. M., 2014. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquaculture Research 45(6): 994-1003.
Borda, E., Martinez-Puig, D., and Cordoba, X., 2003. A balanced nucleotide. Feed Mix 11(6): 24-26.
Borgeson, T. L., Racz, V. J., Wilkie, D. C., White, L. J., and Drew, M. D., 2006. Effect of replacing fishmeal and oil with simple or complex mixtures of vegetable ingredients in diets fed to Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition 12(2): 141-149.
Bugueño, G., Escriche, I., Martı́nez-Navarrete, N., Camacho, M.D., and Chiralt, A., 2003. Influence of storage conditions on some physical and chemical properties of smoked salmon (Salmo salar) processed by vacuum impregnation techniques. Food Chemistry 81(1): 85-90.
Burrells, C., Williams, P. D., and Forno, P. F., 2001. Dietary nucleotides: a novel supplement in fish feeds: 1. Effects on resistance to disease in salmonids. Aquaculture 199(1): 159-169.
Calder, P. C., Yaqoob, P., Thies, F., Wallace, F. A., and Miles, E. A., 2002. Fatty acids and lymphocyte functions. British Journal of Nutrition 87: 31-48.
Chou, R. L., Her, B. Y., Su, M. S., Hwang, G., Wu, Y. H., and Chen, H. Y., 2004. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229(1): 325-333.
Chuang, J. L., Lin, R. T., and Shiau, C. Y., 2010. Comparison of meat quality related chemical compositions of wild-captured and cage-cultured cobia. Journal of Marine Science and Technology 18(4): 580-586.
Cobb, B. F., Aoaniz, I., and Thomson, C. A., 1973. Biochemical and microbial studies on shrimp: volatile nitrogen and amino nitrogen analysis. Journal of Food Science 38(3): 431-436.
Espe, M., Lemme, A., Petri, A., and El-Mowafi, A., 2006. Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture 255(1): 255-262.
FAOSTAT, 2013. Statistical Database (Online) of Food and Agriculture Organization of the United Nations.
Flos, R., Reig, L., Oca, J., and Ginovart, M., 2002. Influence of marketing and different land-based systems on gilthead sea bream (Sparus aurata) quality. Aquaculture International 10(3): 189-206.
Francis, D. S., Turchini, G. M., Jones, P. L., and De Silva, S. S., 2006. Effects of dietary oil source on growth and fillet fatty acid composition of Murray cod, Maccullochella peelii peelii. Aquaculture 253(1): 547-556.
Francis, G., Makkar, H. P., and Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3): 197-227.
Froese, R. and Pauly, D., 2015. Fishbase. World Wide Web electronic publication. Version 10/2015.
Fuentes, A., Fernández-Segovia, I., Serra, J. A., and Barat, J. M., 2010. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chemistry 119(4): 1514-1518.
Fujimura, S., Kawano, S., Koga, H., Takeda, H., Kadowaki, M., and Ishibashi, T., 1995. Identification of taste-active components in the chicken meat extract by omission test-involvement of glutamic acid, IMP and potassium lon. Animal Science and Technology 66(1): 43-51.
Fuke, S. and Konosu, S., 1989. Taste-active components of a few species of bivalves. Society for Research on Umami Taste 89: 85-91.
G´omez-Requeni, P., Mingarro, M., Calduch-Giner, J. A., Médale, F., Martin, S. A. M., Houlihan, D. F., Kaushik, S., and Perez-Sanchez, J., 2004. Protein growth performance, amino acid utilisation and soma-totropic axis responsiveness to fish meal replacementby plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 23(1): 2493-510.
Grigorakis, K. A., Otterå, H., Olsen, R. E., Slinde, E., Taranger, G. L., and Skaala, Ø., 2009. A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 286(3): 203-210.
Grigorakis, K., Alexis, M. N., Taylor, K. D., and Hole, M., 2002. Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. International Journal of Food Science and Technology 37(5): 477-484.
Grillo, M. A., and Colombatto, S., 2004. Metabolism and function in animal tissues of agmatine, a biogenic amine formed from arginine. Amino acids 26(1): 3-8.
Hardy, R. W., 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research 41(5): 770-776.
Hassaan, M.S., Soltan, M.A., and Abdel-Moez, A.M., 2015. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Animal Feed Science and Technology 201:89-98.
Heady, J. E., and Kerr, S. J., 1973. Purification and characterization of glycine N-methyltransferase. Journal of Biological Chemistry 248(1): 69-72.
Hong, H., Regenstein, J. M., and Luo, Y., 2017. The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: a review. Critical Reviews in Food Science and Nutrition 57(9): 1787-1798.
Hong, K. J., Lee, C. H., and Kim, S. W., 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. Journal of Medicinal Food 7(4): 430-435.
Hossain, M. A., Almatar, S. M., Al-Abdul-Elah, K. M., and Yaseen, S. B., 2012. Comparison of proximate composition and fatty acid profiles in cultured and wild marine fishes in Kuwait. Journal of Applied Aquaculture 24(3): 199-209.
Hultin, H. O., 1985. Characteristics of muscle tissue. Food Chemistry 2: 725.
Hwang, D. F., Chen, T. Y., Shiau, C. Y., and Jeng, S. S., 2000. Seasonal variations of free amino acids and nucleotide‐related compounds in the muscle of cultured Taiwanese puffer Takifugu rubripes. Fisheries Science 66(6): 1123-1129.
Ikeda, S. and Connell, J. J., 1980. Other organic components and inorganic components. Advances in Fish Science and Technology, 111-124.
Itoi, S., Saito, T., Washio, S., Shimojo, M., Takai, N., Yoshihara, K., and Sugita, H., 2007. Speciation of two sympatric coastal fish species, Girella punctata and Girella leonina (Perciformes, Kyphosidae). Organisms Diversity and Evolution 7(1): 12-19.
Jankowska, B., Zakęś, Z., Żmijewski, T., and Szczepkowski, M., 2010. Fatty acid profile of muscles, liver and mesenteric fat in wild and reared perch (Perca fluviatilis L.). Food Chemistry 118(3): 764-768.
Jensen, I. J., Larsen, R., Rustad, T., and Eilertsen, K. E., 2013. Nutritional content and bioactive properties of wild and farmed cod (Gadus morhua L.) subjected to food preparation. Journal of Food Composition and Analysis 31(2): 212-216.
Jiang, S. T., and Lee, T. C., 1985. Changes in free amino acids and protein denaturation of fish muscle during frozen storage. Journal of Agricultural and Food Chemistry 33(5): 839-844.
Kanda, M. and Yamaoka, K., 1995. Tooth and gut morphology in relation to feeding in three girellid species (Perciformes: Girellidae) from southern Japan. Netherlands Journal of Zoology 45(3): 495-512.
Kaschner, K., K. Kesner-Reyes., C. Garilao., J. Rius-Barile., T. Rees., and R. Froese., 2015. AquaMaps. World Wide Web electronic publication. Version 08/2015.
Kato, H., Rhue, M.R., and Nishimura, T., 1989. Role of free amino acids and peptides in food taste. ACS Symposium series-American Chemical Society, USA.
Kawakami, H., Suzukawa, K., Yamashita, H., Kohno, Y., Kono, T., and Sakai, M., 1999. Mass mortality of wild largescale blackfish Girella punctata caused by Photobacterium damsela subsp. piscicida. Fish Pathology 34(2): 87-88.
Kim, S. H., Yang, J. L., and Song, Y. S., 1999. Physiological functions of chongkukjang. Food Industry Nutrition 4(40-46): 1111.
Komata, Y., 1990. Umami taste of seafoods. Food Reviews International 6(4): 457-487.
Konosu, S. and Hayashi, T., 1975. Detemination of β-alanine betaine and glycinebetaine in some marine invertebrates. Bulletin of the Japanese Society for the Science of Fish 41(7): 743-746.
Konosu, S. and Yamaguchi, K., 1982. The flavor compounds in fish and shellfish. Chemistry and Biochemistry of Marine Food Products, 367-372.
Konosu, S. and Yamaguchi, K., 1987. Role of extractive components of boiled crab in producing the characteristic flavor. Umami: A Basic Taste, NY, 235-253.
Konosu, S., Watanabe, K., and Shimizu, T., 1974. Distribution of nitrogenous constituents in the muscle extracts of eight species of fish. Bulletin of the Japanese Society for the Science of Fish 40: 909-914.
Konosu, S., Yamaguchi, K., and Hayashi, T., 1978. Studies on flavor components in boiled crabs, 1: Amino acids and related compounds in the extracts. Nippon Suisan Gakkaishi 44: 505-510.
Kristoffersen, S., Tobiassen, T., Esaiassen, M., Olsson, G. B., Godvik, L. A., Seppola, M. A., and Olsen, R. L., 2006. Effects of pre‐rigour filleting on quality aspects of Atlantic cod (Gadus morhua L.). Aquaculture Research 37(15): 1556-1564.
Kromhout, D., Yasuda, S., Geleijnse, J. M., and Shimokawa, H., 2012. Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work?. European Heart Journal 33(4): 436-443.
Li, P., and Gatlin, D. M., 2006. Nucleotide nutrition in fish: current knowledge and future applications. Aquaculture 251(2): 141-152.
Liang, X. F., Hu, L., Dong, Y. C., Wu, X. F., Qin, Y. C., Zheng, Y. H., Shi, D.D., and Xue, M., 2017. Substitution of fish meal by fermented soybean meal affects the growth performance and flesh quality of Japanese seabass (Lateolabrax japonicus). Animal Feed Science and Technology 229, 1-12.
Lochmann, R. T., & Gatlin III, D. M., 1993. Essential fatty acid requirement of juvenile red drum (Sciaenops ocellatus). Fish Physiology and Biochemistry 12(3): 221-235.
López, L. M., Durazo, E., Viana, M. T., Drawbridge, M., and Bureau, D. P., 2009. Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscion nobilis. Aquaculture 289(1): 101-105.
Maenz, D. D., Irish, G. G., and Classen, H. L., 1999. Carbohydrate-binding and agglutinating lectins in raw and processed soybean meals. Animal Feed Science and Technology 76(3): 335-343.
Matoba, T., Kuchiba, M., Kimura, M., and Hasegawa, K., 1988. Thermal degradation of flavor enhancers inosine 5’-monophosphate and guanosine 5’-monophosphate in aqueous solution. Journal of Food Science 53(4): 1156-1159.
Mazorra-Manzano, M. A., Pacheco-Aguilar, R., Dlaz-Rojas, E. I., and Lugo-sanchez, M. E., 2000. Postmortem changes in black skipjack muscle during storage in ice. Journal of Food Science 65(5): 774-779.
Mito, S., 1957. Egg development and hatched larvae of Girella punctata Gray (Girellidae, Teleostei). Japanese Journal of Ichthyology 6, 105-108.
Mnari, A., Bouhlel, I., Chraief, I., Hammami, M., Romdhane, M. S., El Cafsi, M., and Chaouch, A., 2007. Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chemistry 100(4): 1393-1397.
Murata, M. and Sakaguchi, M., 1986. Changes in content of amino acid trimethylamine and nonprotein nitrogen of oyster during ice storage. Bulletin of the Japanese Society for the Science of Fish 52(3): 1975-1980.
Murata, Y., Henmi, H., and Nishioka, F., 1994. Extractive components in the skeletal muscle from ten different species of scombroid fishes. Fisheries Science 60(4): 473-478.
Nakazoe, J. I., Kimura, S., Yokoyama, M., and Iida, H., 1986. Effects of the supplementation of algae or lipids to the diets on the growth and body composition of nibbler Girella punctata Gray. Bulletin of Tokai Regional Fisheries Research Laboratory 120:43-51.
Norambuena, F., Estevez, A., Bell, G., Carazo, I., and Duncan, N., 2012. Proximate and fatty acid compositions in muscle, liver and gonads of wild versus cultured broodstock of Senegalese sole (Solea senegalensis). Aquaculture, 356, 176-185.
Nordrum, S., Bakke-McKellep, A. M., Krogdahl Å., and Buddington, R.K., 2000. Effects of soybean meal and salinity on intestinal transport of nutrients in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 125(3): 317–335.
Okuno, R., 1956. A schooling habit of young Girella punctata, a common reef fish along the Japanese coast. Japanese Journal of Ecology 6(3): 99-102.
Ólafsdóttir, G., Martinsdóttir, E., Oehlenschlüger, J., Dalgaard, P., Jensen, B., Undeland, I., Mackie, I.M., Henehan, G., Nielsen, J., and Nilsen, H., 1997. Methods to evaluate fish freshness in research and industry. Trends in Food Science and Technology 8(8): 258-265.
Oliva-Teles, A. and Gonc-alves, P., 2001. Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture 202, 269–278.
Olsson, G. B., Seppola, M. A., and Olsen, R. L., 2007. Water-holding capacity of wild and farmed cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) muscle during ice storage. LWT-Food Science and Technology 40(5): 793-799.
O'Neill, B., Le Roux, A., and Hoffman, L. C., 2015. Comparative study of the nutritional composition of wild versus farmed yellowtail (Seriola lalandi). Aquaculture 448, 169-175.
Opstvedt, J., Mundheim, H., Nygård, E., Aase, H., and Pike, I. H., 2000. Reduced growth and feed consumption of Atlantic salmon (Salmo salar L.) fed fish meal made from stale fish is not due to increased content of biogenic amines. Aquaculture 188(3): 323-337.
Özogul, Y., Özogul, F., and Gökbulut, C., 2006. Quality assessment of wild European eel (Anguilla anguilla) stored in ice. Food Chemistry 95(3): 458-465.
Parlapani, F. F., Haroutounian, S. A., Nychas, G. J. E., and Boziaris, I. S., 2015. Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2℃. Food Microbiology 50: 44-53.
Peres, H., and Oliva-Teles, A., 1999. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture 179(1): 325-334.
Post, L. S., Lee, D. A., Solberg, M., Furgang, D., Speecchio, J., and Graham, C., 1985. Development of botulinal toxin and sensory deterioration during storage of vacuum and modified atmosphere packaged fish fillets. Journal of Food Science 50(4): 990-996.
Refstie, S., Sahlström, S., Bråthen, E., Baeverfjord, G., and Krogedal, P., 2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 246(1): 331-345.
Rodríguez-Barreto, D., Jerez, S., Cejas, J. R., Martin, M. V., Acosta, N. G., Bolaños, A., and Lorenzo, A., 2012. Comparative study of lipid and fatty acid composition in different tissues of wild and cultured female broodstock of greater amberjack (Seriola dumerili). Aquaculture 360: 1-9.
Romalde, J. L., 2002. Photobacterium damselae subsp. piscicida: an integrated view of a bacterial fish pathogen. International Microbiology 5(1): 3-9.
Ruiz-Capillas, C., and Moral, A., 2001. Changes in free amino acids during chilled storage of hake (Merluccius merluccius L.) in controlled atmospheres and their use as a quality control index. European Food Research and Technology 212(3): 302-307.
Ruiz-Capillas, C., and Moral, A., 2004. Free amino acids in muscle of Norway lobster (Nephrops novergicus L.) in controlled and modified atmospheres during chilled storage. Food Chemistry 86(1): 85-91.
Rzepka, M., Özogul, F., Surówka, K., and Michalczyk, M., 2013. Freshness and quality attributes of cold stored Atlantic bonito (Sarda sarda) gravad. International Journal of Food Science and Technology 48(6): 1318-1326.
Safran, P. and Omori, M., 1990. Some ecological observations on fishes associated with drifting seaweed off Tohoku coast, Japan. Marine Biology 105(3): 395-402.
Saito, T., Arai, K. I. and Matsuyoshi, M., 1959. A new method for estimating the freshness of fish. Bulletin of the Japanese Society of Scientific Fisheries 24, 749-750.
Sanz, A., Suárez, M. D., Hidalgo, M. C., Gallego, M. G., and De la Higuera, M., 1993. Feeding of the European eel Anguilla anguilla. III. Influence of the relative proportions of the energy yielding nutrients. Comparative Biochemistry and Physiology Part A: Physiology 105(1): 177-182.
Sawyer, F. M., Cardello, A. V., and Prell, V. A., 1988. Consumer evaluation of the sensory properties of fish. Journal of Food Science 53(1): 12-18.
Silbande, A., Adenet, S., Smith-Ravin, J., Joffraud, J. J., Rochefort, K., and Leroi, F., 2016. Quality assessment of ice-stored tropical yellowfin tuna (Thunnus albacares) and influence of vacuum and modified atmosphere packaging. Food Microbiology 60: 62-72.
Skiba, G., Poławska, E., Sobol, M., Raj, S., and Weremko, D., 2015. Omega-6 and omega-3 fatty acids metabolism pathways in the body of pigs fed diets with different sources of fatty acids. Archives of Animal Nutrition 69(1): 1-16.
Skrede, G., Storebakken, T., Skrede, A., Sahlstrøm, S., Sørensen, M., Shearer, K. D., and Slinde, E., 2002. Lactic acid fermentation of wheat and barley whole meal flours improves digestibility of nutrients and energy in Atlantic salmon (Salmo salar L.) diets. Aquaculture 210(1): 305-321.
Smichi, N., Abdelmalek, B. E., Kharrat, N., Sila, A., Gargouri, Y., and Fendri, A., 2017. The effects of storage on quality and nutritional aspects of farmed and wild sea bass (Dicentrachus labrax) muscle: In vitro oils digestibility evaluation. Fisheries Research 188, 74-83.
Song, C., Zhuang, P., Zhang, L., Liu, J., and Luo, G., 2007. Comparison of nutritive components in muscles between wild and farmed juveniles of Chinese sturgeon Acipenser sinensis. Acta Zoologica Sinica, 502-510.
Stansby, M.E., 1963. Industrial Fishery Technology. Reinhold, USA, New York, pp. 416.
Suyama, M., Hirano, T., Okada, N., and Shibuya, T., 1977. Quality of wild and cultured Ayu, 1: On the proximate composition, free amino acids and related compounds. Bulletin of the Japanese Society of Scientific Fisheries, 43: 535-540.
Takeuchi, T., Satoh, S., and Watanabe, T., 1983. Requirement of eel Tilapia nilotica for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 49: 1127-1134.
Takeuchi, T., Watanabe, K., and Yong, WY., 1991. Essential fatty acid of grass carp Ctenopharyngodon idella. Nippon Suisan Gakkashi 57(3): 467-473.
Takeuchi, T., Watanabe, T., Arai, S., and Shinma, Y., 1980. Requirement of eel, Anguilla japonica, for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 46: 345-353.
Viola, S., Mokady, S., Behar, D., and Cogan, U., 1988. Effects of polyunsaturated fatty acids in feeds of tilapia and carp: 1. Body composition and fatty acid profiles at different environmental temperatures. Aquaculture 75(1): 127-137.
Viola, S., Rappaport, U., Arieli, Y., Amidan, G., and Mokady, S., 1981. The effects of oil-coated pellets on carp (Cyprinus carpio) in intensive culture. Aquaculture 26(1): 49-65.
Wang, Y., Wang, F., Ji, W. X., Han, H., and Li, P., 2015. Optimizing dietary protein sources for Japanese sea bass (Lateolabrax japonicus) with an emphasis on using poultry by‐product meal to substitute fish meal. Aquaculture Research 46(4): 874-883.
Watabe, S., Kamal, M. and Hashimoto, K., 1991. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. Journal of Food Science 56(1): 151-153.
Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R. and Enser, M., 2004. Effects of fatty acids on meat quality: a review. Meat Science 66(1): 21-32.
Wright, C. E., Tallan, H. H., and Lin, Y. Y., 1986. Taurine: biological update. Annual Review of Biochemistry 55(1): 427-453.
Yagishita, N. and T. Nakabo., 2000. Revision of the genus Girella (Girellidae) from East Asia. Ichthyological Research 47(2): 119-135.
Yagishita, N. and T. Nakabo., 2003. Evolutionary trend in feeding habits of Girella (Perciformes: Girellidae). Ichthyological Research 50(4): 358-366.
Yamada, K., 1967. Occurrence and origin of trimethylamine oxide in fishes and marine invertebrates. Bulletin of the Japanese Society for the Science of Fish 33: 591-603.
Yamaguchi, S. and Kobori, I., 1991. Nucleotides: as umami substances or umami enhancers. Proceedings of the 25th Japanese Symposium on Taste and Smell 269-272.
Zakeri, M., Marammazi, J. G., Kochanian, P., Savari, A., Yavari, V., and Haghi, M., 2009. Effects of protein and lipid concentrations in brood stock diets on growth, spawning performance and egg quality of yellowfin sea bream (Acanthopagrus latus). Aquaculture 295(1): 99-105.
Zhang, Y. Q., Wu, Y. B., Jiang, D. L., Qin, J. G., and Wang, Y., 2014. Gamma-irradiated soybean meal replaced more fish meal in the diets of Japanese seabass (Lateolabrax japonicus). Animal Feed Science and Technology 197, 155-163.
Zhao, F., Zhuang, P., Zhang, L., and Shi, Z., 2010. Biochemical composition of juvenile cultured vs. wild silver pomfret, Pampus argenteus: determining the diet for cultured fish. FishPhysiology and Biochemistry 36(4): 1105-1111.
Zhou, F., Song, W., Shao, Q., Peng, X., Xiao, J., Hua, Y., and Ng, W. K., 2011. Partial replacement of fish meal by fermented soybean meal. in diets for black sea bream, Acanthopagrus schlegelii, juveniles. Journal of the World Aquaculture Society 42(2): 184-197.
電子全文
全文檔開放日期:2017/07/14
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *