字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:李詩涵
研究生英文姓名:Lee, Shih-Han
中文論文名稱:不同鉛濃度下對文蛤(Meretrix lusoria)各組織鉛蓄積及金屬硫蛋白表現量之影響
英文論文名稱:Effect on the lead accumulation and metallothionein level of Meretrix lusoria at lead concentrations
指導教授姓名:鄭學淵
口試委員中文姓名:教授︰賴弘智
教授︰劉秉忠
教授︰劉俊宏
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學號:10431008
請選擇論文與海洋研究相關度:間接相關
請選擇論文為:學術型
畢業年度:105
畢業學年度:104
學期:
語文別:中文
論文頁數:69
中文關鍵詞:文蛤組織蓄積金屬硫蛋白
英文關鍵字:Meretrix lusorialeadtissue accumulationmetallothionein
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
本論文研究文蛤 (Meretrix lusoria) 暴露於鹽度24‰,不同鉛濃度 (0.5、1及5 mg/L) 與暴露天數 (0、1、2、3及4天) 下,各組織鉛含量及金屬硫蛋白表現量,並探討各組織鉛蓄積與金屬硫蛋白表現量之關係。
文蛤在不同鉛濃度環境下,各組織鉛含量隨外界鉛濃度增加而上升 (p<0.05),其鉛含量亦隨暴露天數變化而增加 (p<0.05),但變動幅度隨不同的組織而有所差異。其中鰓、外套膜及肝等三個組織鉛蓄積最為顯著 (p<0.05),而斧足組織在實驗第4天鉛含量有明顯的上升 (p<0.05)。金屬硫蛋白表現量在不同鉛環境下依天數及水體鉛濃度之不同,而有所變化,從變化曲線發現有四種現象,第一種如鰓部與肝臟,組織之金屬硫蛋白表現量在低濃度環境中無明顯變化,而在高濃度環境中金屬硫蛋白表現量下降後不隨天數影響;第二種如外套膜與閉殼肌,組織之金屬硫蛋白表現量下降後不隨天數影響;第三種如斧足,在低濃度鉛環境下金屬硫蛋白表現量先下降後再上升,在高濃度鉛環境中不隨天數而變化;第四種如腸道,在不同鉛濃度金屬硫蛋白表現量變化幅度隨天數而不同。
各組織金屬硫蛋白表現量與不同濃度及暴露時間之相關性方程式中發現鰓、外套膜、斧足、閉殼肌及腸道皆有顯著關係 (p<0.05)。
Studied on the tissues Pb2+ level and Metallothionein induction of Meretrix lusoria exposed to various Pb2+ concentrations (0.5, 1 and 5 mg/L) at salinity 24‰ after 0, 1, 2, 3 and 4 days. And we figure out the relationship between lead and clam tissues of the metallothionein expression in different Pb2+ concentration.
Tissue Pb2+ level varied following the ambient Pb2+ concentrations and exposed time (p<0.05). But the range of variation is different with the kind of tissue. Gill, mantle and liver had significant lead accumulation (p<0.05). Tissue metallotionein varied with the ambient Pb2+ concentrations and exposed time. Change level in tissues had four trends: (1) In the low Pb2+ concentrations environment, metallothionein induction would not be affected by exposing days. In the high Pb2+ concentrations environment, metallothionein induction decreased lowest value and than would be not affected following exposed times, such as gill and liver. (2) Metallothionein induction decreased lowest value and than would be not affected by exposed days, such as mantle and adductor. (3) In the low Pb2+ concentrations environment, metallothionein induction decreased to lowest value and then increased following exposed times. In the high Pb2+ concentrations environment metallothionein induction would not be affected by exposed times, such as foot. (4) Metallotionein varied with the ambient Pb2+ concentrations and exposed time, such as intestine.
The tissues of metallothionein expression with lead concentration and time correlation equation was found to gill, mantle, foot, adductor and intestine significant relationship (p<0.05).
中文摘要.........................................................................................................................I
Abstract.........................................................................................................................II
謝辭............................................................................................................................Ⅲ
目次............................................................................................................................Ⅳ
圖目次.........................................................................................................................Ⅴ
表目次.........................................................................................................................Ⅶ
第一章 緒言..................................................................................................................1
第二章 文獻整理..........................................................................................................3
第三章 文蛤 (Meretrix lusoria) 於不同鉛濃度下各組織鉛含量變化情形
一、摘要....................................................................................................................9
二、前言....................................................................................................................9
三、材料與方法......................................................................................................10
四、結果..................................................................................................................12
五、討論..................................................................................................................14
第四章 文蛤 (Meretrix lusoria) 於不同鉛濃度下各組織金屬硫蛋白表現量變化情形
一、摘要..................................................................................................................18
二、前言..................................................................................................................18
三、材料與方法......................................................................................................19
四、結果..................................................................................................................20
五、討論..................................................................................................................24
第五章 結論................................................................................................................28
圖..................................................................................................................................29
表..................................................................................................................................53
參考文獻......................................................................................................................56
Abel, P.D., 1989. Water pollution Biology. Ellis Horwood Publishers, Chicheswter 231.
Abdullah, M.H., Sidi, J. and Aris, A.Z., 2007. Heavy Metals (Cd, Cu, Cr, Pb and Zn) in Meretrix meretrix Röding, Water and Sediments from Estuaries in Sabah, North Borneo. International Journal of Environmental and Science Education 2, 69–74.
Agency for Toxic Substances and Disease Registry (ATSDR), 2007. Toxicological Profile for lead (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service.
Amiard, J.C., Amiard-Triquet, C., Barka, S., Pellerin, J., and Rainbow, P.S., 2006. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology 76, 160-202.
Anderson, M.B., Preslan, J.E., Jolibois, L., Bollinger, J.E., and George, W.G., 1997. Bioaccumulation of lead nitrate in red swamp cryfish(Procambarus clarkia). Journal of Hazardous Materials 54, 15-29.
Andrews, G.K., 1989. Regulation of metallothionein gene expression. Progress in food and nutrition science 14, 193-258.
Atif, F., Kaur, M., Yousuf, S., and Raisuddin, S., 2006. In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch. Chemico-biological interactions 162, 172-180.
Barka, S., Pavillon, J.F., and Amiard, J.C., 2001. Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis. Comparative Biochemi1stry and Physiology Part C: Toxicology & Pharmacology 128, 479-493.
Baudrimont, M., Lemaire-Gony, S., Ribeyre, F., Métivaud, J., and Boudou, A., 1997. Seasonal Variations of Metallothionein Concentrations in the Asiatic Clam (Corbicula fluminea). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 118, 361-367.
Bebianno, M.J., and Serafim, M.A., 1998. Comparison of metallothionein induction in response to cadmium in the gills of bivalves molluscs Mytilus galloprovincialis and Ruditapes decussatus. Sci. Total Environ 214, 123–131.
Bebianno, M.J., and Serafim, M.A., 2003. Variation of metal and metallothionein concentrations in a natural population of Ruditapes decussatus. Arch. Environ. Contam. Toxicol 44, 53–66.
Blasco, J., and Puppo, J., 1999. Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 122, 253-263.
Bliss, D.E., 1983. The biology of crustacea: Internal anatomy and physiological regulation. The Biology of Crustacea 5, 431-457.
Boening, D.W., 1999. An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environmental monitoring and assessment 55, 459-470.
Bremner, I., 1987. Nutritional and physiological significance of metallothionein. Experientia Suppl 52, 81–107.
Bremner, I., and Beattie J.H., 1990. Metallothionein and the trace minerals. Annu. Rev. Nutr 10, 63–83.
Cai, L., Satoh, M., Tohyama, C., and Cherian, M.G., 1999. Metallothionein in radiation exposure: its induction and protective role. Toxicology 132, 85-98.
Cajaraville, M.P., Diez, G., Marigomez. J.I., and Angulo, E., 1990. Responses of basophilic cells of the digestive gland of mussels to petroleum hydrocarbon exposure. Dis Aquat Organ 9, 221–228.
Cajaraville, M.P., Marigomez, I., and Angulo, E., 1991. Light and electron microscopi study of the gill epithelium of Littorina littorea (Gastropoda: Prosobranchia). Biol Struct Morf 3, 1–12.
Cajaraville, M.P., Robledo, Y., Etxeberria, M., and Marigomez, I., 1995. Cellular biomarkers as useful tools in the biological monitoring of environmental pollution: molluscan digestive lysosomes. In: Cajaraville, M.P., (ed) Cell biology in environmental toxicology. University of the Basque Country Press Service, Bilbo 29–55.
Canli, M., Stagg, R.M., and Rodger, G., 1997. The induction of metallothionein in tissues of the Norway lobster Nephrops norvegicus following exposure to cadmium, copper and zinc: the relationships between metallothionein and the metals, Environmental Pollution 96, 343–350.
Carpene, E., Cortesi, P., Crisetig, G., and Serrazanetti, G.P., 1980. Cadmium binding proteins from the mantle of Mytilis edulis after exposure to cadium. Thalassia Jugoslavica. 16, 317-323.
Cervantes, C., and Evans, R.D., 1999. Contaminación ambiental por metals pesados: impacto en los seres vivos. AGT Editor, México.
Chalghmi, H., Bourdineaud, J.P., Haouas, Z., Gourves, P.Y., Zrafi, I., and Saidane-Mosbahi, D., 2016. Transcriptomic, Biochemical, and Histopathological Responses of the Clam Ruditapes decussatus from a Metal-Contaminated Tunis Lagoon. Archives of environmental contamination and toxicology 70, 241-256.
Chang, Y.T., Jong, K.J., Liao, B.K., and Wu, S.M., 2007. Cloning and expression of metallothionein cDNA in the hard clam (Meretrix lusoria) upon cadmium exposure. Aquaculture 262, 504-513.
Chelomin, V.P., Bobkova, E.A., Lukyanova, O.N., and Chekmasova, N.M. 1995. Cadmium-induced alterations in essential trace element homeostasis in the tissues of scallop Mizuhopecten yessoensis. Comp. Biochem. Physiol 110, 329-35.
Chen, W.Y., John, J.A.C., Lin, C.H., Lin, H.F., Wu, S.C., Lin, C.H., and Chang, C.Y., 2004. Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquatic Toxicology 69, 215-227.
Cherian, M.G., and Nordberg, M. 1983. Cellular adaptation in metal toxicology and metallothionein. Toxicology 28, 1-15.
Cheung, A.P., Lam, T.H.J., and Chan, K.M., 2004. Regulation of Tilapia metallothionein gene expression by heavy metal ions. Marine environmental research 58, 389-394.
Cheung, L.A.P., Lam, V.K.L., and Chan, K.M., 2005. Tilapia metallothionein genes: PCR cloning and gene expression studies. Biochim. Biophys. Acta 1731, 191–201.
Choi, H.J., Ji, J., Chung, K.H., and Ahn, I.Y., 2007. Cadmium bioaccumulation and detoxification in the gill and digestive gland of the Antarctic bivalve Laternula elliptica. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 145, 227-235.
Clark, R., 2001. Marine pollution 1-225.(Oxford University Press, Oxford).
Connell, D.W., and Miller, G.J., 1984. Chemistry and Ecotoxicology of Pollution, JohnWiley and Sons, New York, NY, USA.
Cousins, R.J., 1985. Absorption, transport and hepatic metabolism of copper and Zn: special reference to metallothionein and caeruloplasmin. Physiol. Rev. 65, 238–309.
Coyle, P., Philcox, J.C., Carey, L.C., and Rofe, A.M., 2002. Review metallothionein: the multipurpose protein. Cellular and Molecular Life Sciences 59, 627–647.
Dabrio, M., Rodriguez, A.R., Bordin, G., Bebianno, M.J., DeLey, M., Šestáková, I., Vašák, M., and Nordberg, M., 2002. Recent developments in quantification methods for metallothionein. J. Inorg. Biochem 88, 123-134.
Dall, W., and Moriarty, D.J.W., 1983. Functionl aspects of nutrition and digestion. Journal of Crustacean Biology 5, 215-261.
Darriba, S., Sánchez-Marín, P., 2013. Lead accumulation in extracellular granules detected in the kidney of the bivalve Dosinia exoleta. Aquat. Living Resour 26, 11-17.
Davies, P.H., Goettl, J.P., Stanley, J.R. and Smith, N.F., 1976. Acute and chronic toxicity of lead to rainbow trout Salmo gairdneri, in hard and soft water. Water Research 10, 199-206.
Davies, S.R., and Robert, J.C., 2000. Metallothionein expression in animals: a physiological perspective on function. Rec. Advan. Nutr. Sci. 130, 1085-1088.
De, S.K., McMaster, M.T., and Andrews, G.K., 1990. Endotoxin induction of murine metallothionein gene expression. Journal of Biological Chemistry 265, 15267-15274.
Dimitriadis, V.K., Domouhtsidou, G.P., and Raftopoulou. E., 2003. Localization of Hg and Pb in the palps, the digestive gland and the gills in Mytilus galloprovincialis (L.) using autometallography and X-ray microanalysis. Environmental Pollution 125 345–353.
Duncan, D.B., 1955. Mutiple-range and multiple F test. Biometrics 11, 1-42.
Duquesne, S.J, and Coll, J.C., 1995. Metal accumulation in the clam Tridana cocea under natural and experimental conditions. Aquat Toxicol 32, 523-528.
Engel, D.W., and Roesijadi, G., 1987. “Metallothioneins: a monitoring tool,” in Pollution Physiology of Estuarine Organisms, F. J. Vernberg, Ed., 421–438, University of South Caroline Press, Columbia, SC, USA,
Engel, D.W., and Brouwer, M., 1987. Metal regulation and molting in the blue crab, Callinectes sapidus: metallothionein function in metal metabolism. The Biological Bulletin 173, 239-251.
Engel, D.W., and Brouwer, M., 1993. Crustacean as models of metal metabolism: I. Effects of the molt cycle on blue crab metal metabolism and metallothionein. Mar. Environ 35, 1–5.
Erk, M., Muyssen, B.T., Ghekiere, A., and Janssen, C.R., 2008. Metallothionein and cellular energy allocation in the estuarine mysid shrimp Neomysis integer exposed to cadmium at different salinities. Journal of Experimental Marine Biology and Ecology 357, 172-180.
Fang, Y., Yang, H., and Liu, B., 2012. Tissue-specific response of metallothionein and superoxide dismutase in the clam Mactra veneriformis under sublethal mercury exposure. Ecotoxicology 21, 1593-1602.
Fishelson, L., Bresler, V., Manelis, R., Zuk-Rimon, Z., Dotan, A., Hornung, H. and Yawetz, A., 1999. Toxicological aspects associated with the ecologyy of Donax trunculus (Bivalvia, Mollusca) in a polluted environment. Science of The Total Environment 226, 121-131.
Fourie, F., Reinecke, S.A., and Reinecke, A.J., 2007. The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicology and Environmental Safety 67, 361-368.
Fowler, B.A., Hildebrand, C.E., Kojima, Y., and Webb, M., 1987. Nomenclature of metallothionein in:MetallothioneinⅡ, Birkhäuser Basel 19-22.
Frazier, J.M., 1986. Cadmium-binding proteins in the mussel Mytilus edulis. Environ. Heal. Pers. 65, 39-43.
Fukunaga, A., and Anderson, M.J., 2011. Bioaccumulation of copper, lead and zinc by the bivalves Macomona liliana and Austrovenus stutchburyi. Journal of experimental marine biology and ecology 396, 244-252.
Gagné, F., Blaise, C., and Hellou, J., 2004. Endocrine disruption and health effects of caged mussels, Elliptio complanata, placed downstream from a primary-treated municipal effluent plume for 1 year. Comp. Biochem. Physiol. C: Toxicol. Pharmacol 138, 33–44.
Geffard, A., Geffard, O., His, E., and Amiard, J.-C., 2002. Relationships between metal bioaccumulation and metallothionein levels in larvae of Mytilus galloprovincialis exposed to contaminated estuarine sediment elutriate. Marine Ecology Progress Series 233, 131–142.
George, S.G., Olsson, P.E., 1994. Metallothioneins as indicators of trace metal pollution. In: Kramer, K.J.M. (Ed.), Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton 151–178.
Goering, P.L., and Klaassen, C.D., 1984. Tolerance to cadmium-induced toxicity depends on presynthesized metallothionein in liver. J. Toxicol. Environ. Health 14, 803-812.
Goyer, R.A., 1997. Toxic and essential metal interactions. Annual Review of Nutrition 17, 37-50.
Hamada, T., Tanimoto, A., and Sasaguri, Y., 1997. Apoptosis induced by cadmium. Apoptosis 2, 359–367.
Hamer, D.H., 1986. Metallothionein. Ann. Rev. Biochem 55, 913–951.
Hamilton, S.J., Mehrle, P.M., 1986. Metallothionein in fish: review of its importance in assessing from metal contaminants. Trans. Am. Fish. Soc 115, 596-609.
Han, B.C., and Huang, T.C., 1990. Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution 65, 347-362.
Hao, Q., Hong, S.H., and Maret, W., 2007. Lipid raft-dependent endocytosis of metallothionein in HepG2 cells. J. Cell. Physiol 210, 428–435.
Hardivillier, Y., Denis, F., Demattei, M.V., Bustamante, P., Laulier, M. and Cosson, R., 2006. Metal influence on metallothionein synthesis in the hydrothermal vent mussel Bathymodiolus thermophilus. Comp. Biochem. Physiol. C 143, 321-332.
Haq, F., Mahoney, M., and Koropatnik, J., 2003. Signaling events for metallothionein induction. Mutation Research 533, 211-226.
Hodson, P.V., Blunt, B.R., and Spry, D.J., 1978. Chronic toxicity of waterborne and dietary lead to rainbow trout (Salmo gairdneri) in Lake Ontario water. Water Research 12, 869-878.
Huerta-Diaz, M.A., Delgadillo-Hinojosa, F., Hernández-Ayón, M., Segovia-Zavala, J.A., García-Esquivel, Z., López-Zárate, H., and Galindo-Bect, S., 2008. Diagnosis of trace metal contamination in sediments: the example of Ensenada and El Sauzal, two harbors in Baja California, Mexico. Marine environmental research 66, 345-358.
Imvert, J., Culotta, V.C., First, P., Gedamu, G., and Hamer, D., 1990. Regulation of metallothionein gene transcription by metals. Adv. Inorg. Biochem. 8, 140-150.
Isani, G., Andreani, G., Kindt, M., and Carpene, E., 2000. Metallothioneins (MTs) in marine molluscs. Cellular and molecular biology (Noisy-le-Grand, France) 46, 311-330.
Jeng, M.S., Jeng, W.L., Hung, T.C., Yeh, C.Y., Tseng, R.J., Meng, P.J., and Han, B.C., 2000. Mussel Watch: A review of copper and other metals in various marine organisms in Taiwan, 1991-98 .Environmental Pollution 110, 207-215.
Jacob, C., Maret, W., and Vallee, B., 1998. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc. Natl. Acad. Sci. USA 95, 3489–3494.
Kägi, J.H.R., and Kojima, Y., 1987. Chemistry and biochemistry of metallothionein. Experientia Suppl 52, 25–61.
Kägi, J.H.R, and Schaffer, A., 1988. Biochemistry of metallothionein. Biochem 27, 859-8515.
Kägi, J.H.R., 1993. Evolution, structure and chemical activity of class I metallothioneins: an overview. In: Suzuki, K.T., Imura, N., Kimura, M. (Eds.), Metallothionein III. Biological Roles and Medical Implications. Birkhäuser Verlag, Berlin 29–56.
Kojima, Y., 1991. Definitions and nomenclature of metallothioneins. Meth. Enzymol 205, 8–10.
Kondo, T., Hayakawa, T., Shibata, T., Kitagawa, M., Sakai, Y., and Ono, H., 1989. Urinary and serum zinc levels in chronic pancreatitis. Pancreas 4, 79–82
Landis, W., Sofield, R., Yu, M.H., Landis, W.G., and Sofield, R.M., 2010. Introduction to environmental toxicology: Molecular substructures to ecological landscapes. CRC Press.
Lane, N.J., Abbott, N.J., 1975. The organization of the nervous system in the crayfish Procambarus clarkii, with emphasis on the blood–brain interface. Cell Tissue Res 156, 173–187.
Langston, W.J., Chesman, B.S., Burt, G.R., Pope, N.D., and McEvoy, J., 2002. Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality. Mar. Environ 53, 263–293.
Lee, D.-Y., Prasad, A.S., Hydrick-Adair, C., Brewer, G., and Johnson, P.E. 1993. Homeostasis of zinc in marginal human zinc deficiency; role of absorption and endogenous excretion of zinc. J. Lab. Clin. Med 122, 549–556.
Lee, H.H., Hill, G.M., Sikha, M., Brewer, G.J., Prasad, A.S., and Owyang, C., 1990. Pancreatobiliary secretion of zinc and copper in normal persons and patients with Wilsons disease. J. Lab. Clin. Med 116, 283–288
Lemaire-Gony, M., Ribeyre, S., Métivaud, F.J., and Boudou, A., 1997. Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 118, 361-367.
Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg.
Lloyd. R., 1992. Pollution and freshwater fish. Fishing News Books, UK 5-23.
Liang, L., Fu, K., Lee, D.K., Sobieski, R.J., Dalton, T., and Andrews, G.K., 1996. Activation of the complete mouse metallothionein gene locus in the maternal deciduum. Mol. Reprod. Dev 43, 25-37.
Li, N., Zhao, Y., and Yang, J., 2007. Impact of waterborne copper on the structure of gills and hepatopancreas and its impact on the content of metallothionein in juvenile giant freshwater prawn Macrobrachium rosenbergii (Crustacea: Decapoda), Archives of Environmental Contamination and Toxicology 52, 73–79.
Li, S.M., Hu, D.Y., and Tang, C.S., 1996. Biological effect of metallothionein. Foreign Med. Sci. (Sec. Pathophysiol. Clin. Med.) 16, 36–38.
Lars, J., 2003. Hazards of heavy metal contamination. Br. Med. Bull 68, 167-182.
Machreki-Ajmi, M., and Hamza-Chaffai, A., 2006. Accumulation of cadmium and lead in Cerastoderma glaucum originating from the Gulf of Gabes, Tunisia. Bulletin of environmental contamination and toxicology 76, 529-537.
Ma, W., Wang, L., He, Y., and Yan, Y., 2008. Tissue-specific cadmium and metallothionein levels in freshwater crab Sinopotamon henanense during acute exposureto waterborne cadmium. Environ. Toxicol 23, 393–400.
Mance, A.G., 1987. Water and pollution and fish physiology. CRC press, Inc, Boca Raton 245.
Mance, G., 1987. Pollution threat of heavy metals in aquatic environments. Elsev. Appl. Sci. New York 372.
Margoshes, M., and Vallee, B.L., 1957. A cadmium protein from equine kidney cortex. Journal of the American Chemical Society 79, 4813-4814.
Martincié, D., Nürnberg, H.W., Stoeppler, M., and Branica, M. 1984. Bioaccumulation of heavy metals by bivalves from Lim Fjord (North Adriatic Sea). Marine Biology 81, 177-188.
McClain, C.J., 1990. The pancreas and zinc homeostasis. J. Lab.Clin. Med 116, 275–276.
Moffatt, P., and Séguin, C., 1998. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA. Cell. Biol 17, 501-510.
Moltó, E., Bonzón-Kulichenko, E., Arco, A.D., López-Ala˜nón, D.M., Carrillo, O., Gallardo, N., and Andrés, A., 2005. Cloning, tissue expression and metal inducibility of an ubiquitous metallothionein from Panulirus argus. Gene 361, 140–148.
Mottin, E., Caplat, C., Latire, T., Mottier, A., Mahaut, M.L., Costil, K., Bariller, D., Lebel, J.M., and Serpentini, A., 2012. Effect of zinc sacrificial anode degradation on the defence system of the Pacific oyster, Crassostrea gigas: chronic and acute exposures. Marine pollution bulletin 64, 1911-1920.
Nath, R., Kambadur, R., Gulati, S., Paliwal, V.K., and Sharma, M., 1988. Molecular aspects, physiological function and clinical significance of metallothioneins. CRC Crit. Rev. Food Sci. Nutr 27, 41–85.
Navarro, A., Faria, M., Barata, C., Piña, B., 2011. Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults. Environ. Pollut 159, 100–107.
Nieboer, E., and Richardson, D.H.S., 1980. The replacement of the nondescript term heavy metals by a biologically and chemically significant classification of metal ions,” Environmental Pollution Series B 1, 3–26.
Nunez-Nogueira, G., Mouneyrac, C., Muntz, A., and Fernandez-Bringas, L., 2010. Metallothionein-like proteins and energy reserve levels after Ni and Pb exposure in the Pacific white prawn Penaeus vannamei. Journal of toxicology.
Olafson, R.W. and Thompson, J.A.J., 1974. Isolation of heavy metal binding proteins from marine vertebrates. Mar. Biol 28, 83-86.
Onosaka, S., and Cherian, M.G., 1981. The induced synthesis of metallothionein in various tissues of rat in response to metals. II. Influence of zinc status and specific effect on pancreas metallothionein. Toxicology 22, 91–101.
Páez-Osuna, F., and Frías-Espericueta, M., 2001. Bioacumulación, distribución y efectos de los metales pesados en los Pendidos. In: Páez-Osuna F (ed) Camaronicultura y medio ambiente. Instituto de Ciencias del Mar y Limnología, UNAM. Mazatlán Sinaloa, México 245-262.
Pan, L., and Zhang, H., 2006. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp. Biochem. Physiol. C: Toxicol. Pharmacol 144, 67–75.
Pedersen, S.N., Pedersen, K.L., Højrup, P., Depledge, M.H., and Knudsen, J., 1996. Primary structures of decapod crustacean metallothioneins with special emphasis on freshwater and semi-terrestrial species. Biochem. J 319, 999–1003.
Petrović, S., Ozretić, B., Krajnović-Ozretić, M., and Bobinac, D., 2001. Lysosomal membrane stability and metallothioneins in digestive gland of Mussels (Mytilus galloprovincialis Lam.) as biomarkers in a field study. Mar Pollut Bull 42, 1373-8.
Prakash, N.T., Rao, K.S., 1995. Modulations in antioxidant enzymes in different tissues of marine bivalve Perna viridis during heavy metal exposure. Mol. Cell. Biochem 146, 107-13.
Quaife, C.J., Findley, S.D., Erickson, J.C., Froelick, G.J., Kelly, E.J., Zambrowicz, B. P., 1994. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratisfied squamous epithelia. Biochemistry 33, 7250-7259.
Rashid, W. A., Wan, V. L., and Abdullah, M. H., 2009. Accumulation and depuration of heavy metals in the hard clam (Meretrix meretrix) under laboratory conditions. Tropical Life Sciences Research 20, 17-24.
Richards, M.P., and Cousins, R.J., 1975. Mammalian zinc homeostasis: requirements for RNA and metallothionein synthesis. Biochem. Biophys. Res. Commun 64, 1215–1223.
Richards, M.P., and Cousins, R.J., 1976. Metallothionein and its relationship to the metabolism of dietary zinc in rats. J. Nutr 106, 1591–1599
Richards, M.P., 1989. Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. J. Nutr 119, 1062–1070.
Ringwood, A.H., McCarthy, M., Bates, T.C., and Carroll, D.L., 2010. The effects of silver nanoparticles on oyster embryos. Marine Environmental Research 69, Supplement 1 S49–S5
Ringwood, A.H., 1991. Short-term accumulation of cadmium by embyros larvae, and adults of Hawaiian bivalve, Isognomon californicum . J. Exp. Mar. Biol. Ecol 149,55-56.
Robbins, A.H., McRee, D.E., Williamson, M., Collett, S.A., Xuong, N.H., Furey, E.F., and Stout, C.D., 1991. Refined crystal structure of Cd, Zn metallothionein at 2.0 A reso Ringwood lution. J. Mol. Biol 221, 1269–1293.
Roccheri, M.C., Agnello, M., Bonaventura, R., and Matranga, V., 2004. Cadmium induces the expression of specific stress proteins in sea urchin embryos. Bioche Biophys. Res. Commun 321, 80–87.
Rodriguez Moreno, P.A., Medesani, D.A., and Rodriguez. E.M., 2003. Inhibition of molting by cadmium in the crab Chasmagnathus granulata (Decapoda Brachyura). Aquat. Toxicol 64155-164.
Rodriguez-Ortega, M.J., Alhama, J., Funes, V., Romero-Ruiz, A., Rodriguez-Ariza, A., and Lopez-Barea, J., 2002. Biochemica biomarkers of pollution in the clam Chamaclea gallina from south-Spanish littoral. Environ. Toxicol. Chem 21, 542–549.
Rodríguez Moreno, P.A., Medesani, D.A. and Rodríguez E.M., 2003. Inhibition of molting by cadmium inhibition of molting by cadmium in the crab Chasmagnathus granulate (Decapoda Brachyura). Aquatic Toxicology 64, 155-165.
Roesijadi, G., 1981. The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status, Marine Environmental Research 4, 167– 179.
Roesijadi, G., and Fellingham, G.W., 1987. Influence of Cu, Cd and Zn pre-exposure on Hg toxicity in the mussel Mytilus edulis. Can. J. Fish. Aquat. Sci 44, 680–684.
Roesijadi, G., Brubacher, L.L., Unger, M.E., and Anderson, R.S. 1997. Metallothionein mRNA induction and generation of reactive oxygen species in molluscan hemocytes exposed to cadmium in vitro. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 118, 171-176.
Roesijadi, G., 1996. Metallothionein and its role in toxic metal regulation. Comp. Biochem. Physiol. C 113, 117–123.
Roeva, N.N., Sidorov, A.V., and Yurovitskii, Y.G., 1999. Metallothioneins, proteins binding heavy metals in fish. Biol. Bull 26, 617–622.
Romero-Isart, N., and Vašák, M., 2002. Advances in the structure and chemistry of metallothioneins. Journal of inorganic biochemistry 88, 388-396.
Saito, S., and Hunziker, P.E., 1996. Differential sensitivity of metallothionein-1 and -2 in liver of zinc-injected rat toward proteolysis. Biochim. Biophys. Acta 1289, 65–70.
Saito, S., and Kojima, Y., 1997. Differential role of metallothionein on Zn, Cd and Cu accumulation in hepatic cytosol of rates. Cell. Mol. Life Sci 53,267-270.
Serafim, A., and Bebianno, M.J., 2007. Involvement of metallothionein in Zn accumulation and elimination strategies in Ruditapes decussatus. Archives of environmental contamination and toxicology 52, 189-199.
Serafim, A., and Bebianno, M.J., 2010. Effect of a polymetallic mixture on metal accumulation and metallothionein response in the clam Ruditapes decussatus. Aquat. Toxicol 99, 370–378.
Schulz-Baldes, M., 1974. Lead uptake from seawater and food, and lead loss in the common mussel Mytilus edulis. Marine Biology 25, 177–93.
Stell, R.G.D., and Torrie, J.H., 1980. Principles and Procedures of Statistics. McGraw-Hill, New York 633.
Stürzenbaum, S.R., Georgiev, O., Morgan, A.J., and Kille, P., 2004. Cadmium detoxification in earthworms: from genes to cells. Environment Science and Technology 38, 6283-6289.
Sullivan, J.F., Burch, R.E., Quigley, H.J., and Magee, D.F., 1974. Zinc deficiency and decreased pancreatic secretory response. Am. J. Physiol 227, 105–108.
Sunila, I., 1987. Histopathology of mussels (Mytilus edulis L.) from the Tvarminne area, the Gulf of Finland (Baltic Sea). Ann Zool Fennici 24, 55–69.
Sunila, I., 1988. Acute histological responses of the gill of the mussel, Mytilus edulis, to exposure by environmental pollutants. J Invertebr Pathol 52,137–141.
Tandon, S.K., Khandelwal, S., Jain, V.K., and Mathur, N., 1994. Influence of dietary iron deficiency on nickel, lead and cadmium intoxication. Science of the total environment 148, 167-173.
Tran, C.D., Butler, R.N., Philcox, J.C., Rofe, A.M., Howarth, G.S., and Coyle, P., 1998. Regional distribution of metallothionein and zinc in the mouse gut. Biol. Trace Elem. Res 63, 239–251.
Tran, C.D., Butler, R.N., Howarth, G.S., Philcox J.C., Rofe, A.M. and Coyle, P., 1999. Regional distribution and localization of zinc and metallothionein in the intestine of rats fed diets differing in zinc content. Scand. J. Gastroenterol 34, 689–695.
Uma, D.V., 1996. Bioaccumulation and metabolic effects of cadmium on marine fouling dressinid bivalve, Mytilopsis sallei(Recluz). Arch Environ Contam Toxicol 31, 47-53.
United States Department of Labor (USDOL), 2004. Occupational Safety and Health Administration (OSHA); Safety and health topics: heavy metals. USDOL Publication, Washington, DC.
Wang, Y., Liang, L., Shi, J., and Jiang, G., 2005. Study on the contamination of heavy metals and their correlations in molluscs collected from coastal sites along the Chinese Bohai Sea. Environment International 31, 1103–1113.
Wang, Q., Wang, X., Wang, X., Yang, H., and Liu, B., 2010. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure. Aquatic toxicology 100, 321-328
Webb, M., 1972. Protection by zinc against cadmium toxicity. B&hem. Pharmacol 21, 2767-2771.
Wing, D.R., Krasno, J., Colucci, A.V., 1974. Cadmium accumulation in rat liver: correlation between bound metal and pathology, in Hoekstra. Edit by Suttie WJW., Ganther HE., and Mertz W. Trace elemet metabolism in animals 2: University Park Press, Baltimore 500-502.
Yahia, Y., Mosleh, Se´verine., Paris-Palacios, Mohamed, T., Ahmed, F.M., Mahmoud, M.A., and Osman, Sylvie Biagianti-Risbourg., 2007. Effects of chitosan on oxidative stress and metallothioneins in aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae).Chemosphere 67, 167-175.
王河順,2006。不同鹽度及鉛濃度下對烏魚 (Mugil cephalus) 致死、耗氧、排氨及生物濃縮之研究。國立台灣海洋大學環境生物與漁業科學學系碩士論文。
王采玉,2011。不同鹽度與鉛濃度對毛蟶 (Sinonovacula constricta) 蓄積之研究。國立台灣海洋大學環境生物與漁業科學學系碩士論文。
江國瑩,2006。不同鹽度下文蛤及牡蠣對重金屬蓄積之研究。國立台灣海洋大學環境生物與漁業科學學系碩士論文。
巫文隆,1980。台灣重要食用雙枚貝類研究。貝類學報 7, 101-114。
林芃、任宏偉、茹炳根,2001。魚體內金屬硫蛋白與水環境關係的研究。北京大學學報 37, 780-784頁。
周昱翰,2001。文蛤養殖之池塘管理。劉富光(主編):優質貝類養殖技術,38-54頁。行政院農業委員會水產試驗所台西分所,雲林縣。
周彥鋒、吳偉、胡庚東、尤洋、范立民、孟順龍、陳家長,2009。鎘鋅聯合誘導金屬硫蛋白在鯽魚肝臟和腎臟中的表達。生態環境學報 18, 811-816。
胡興華,1974。台灣西南沿海養殖貝類必死調查研究。台灣水產試驗所報告 23, 1-19。
范德朋,潘魯青,馬甡,董雙林,2002。環境因子對縊蟶濾水率的影響。水產學報 26, 226-230。
秦宗顯,1993。文蛤Meretrix lusoria受汞影響之急慢性毒性研究。國立台灣大學動物科學研究所博士論文。
茹炳根,潘愛華,黃秉幹及張建業,1991。金屬硫蛋白。生物化學與生物物理進展18, 254-259。
曾文陽,1976。台灣西南淺海養殖貝類大量死亡之研究。台灣省水產試驗所試驗報告 26, 1-35。
郭崇義,1980。貝類作為重金屬汙染指標之研究。台灣大學海洋研究所博士論文。
陳慧琦。1996。溫度、鹽度及藻類對牡蠣、文蛤濾食影響之研究。國立中山大學海洋資源研究所碩士論文。68頁。
陳鴻議。2001。塭養文蛤死亡之因及防治方法。劉富光(主編):優質貝類養殖技術,55-65頁。行政院農業委員會水產試驗所台西分所,雲林縣。
漁業統計年報,2013。漁業統計年報,行政院農業委員會漁業署,台北。
蔡亞英、張英、魏若非,1979。貝類學概論。上海科學技術出版社,41-45頁。
楊鴻嘉及丁雲源,1984。文蛤人工繁殖之研究。台灣省水產試驗所試驗報告98-111。
楊鴻嘉及丁雲源,1988。台灣西海岸重要雙殼貝生活史及漁場環境之調查。Bull. Taiwan Fish. Res. Inst 45, 67-81。
蔣萬福,1980。台灣西南沿岸貝類含重金屬汞,鉛, 鎘, 銅之研究。文化大學海洋研究所碩士學位論文。
電子全文
全文檔開放日期:2019/07/20
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *