字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:王耀輝
研究生英文姓名:Yao-Huei Wang
中文論文名稱:夏季東海南部貧營養鹽海域混營性著鞭毛蟲(Haptophytes)攝食率之影響因子
英文論文名稱:The controlling factor of mixotrophic haptophytes ingestion rate on bacteria in summer of the southern East China Sea
指導教授姓名:蔣國平
口試委員中文姓名:教授︰謝志豪
副教授︰蔡安益
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境與生態研究所
學號:10283011
請選擇論文為:學術型
畢業年度:104
畢業學年度:103
學期:
語文別:中文
論文頁數:35
中文關鍵詞:混營性微細鞭毛蟲著鞭毛蟲攝食速率細菌
英文關鍵字:MNFhaptophytaingestion ratebacteria
相關次數:
  • 推薦推薦:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏收藏:0
微細鞭毛蟲為單細胞真核生物,大小介於2-20 μm。其中混營性鞭毛蟲(mixotrophic nanoflgellates)族群在某些海域數量較為優勢,且對海洋環境中之細菌數量有一定的控制。東海南部海域由馬祖到黑潮測線,沿岸到外海有自然形成的鹽度梯度,在並受湧昇流之影響,因此在整條測線營養鹽會有非常明顯的變化,本研究希望了解營養鹽變化下,對著鞭毛蟲攝食率有何影響。本次研究在2014年7、8、9月東海南部海域,使用海研二號(OR2- cr2039、cr2046、cr2053)進行三個航次的調查。使用聯酶螢光原位雜合法(tyramide signal amplification-Fluorescence in situ hybridization, TSA-FISH)來標識所要觀察的著鞭毛蟲。並針對有光層表層(SE)及底層(BE)中著鞭毛蟲進行攝食細菌之培養實驗。
  以T-S diagram圖顯示,夏季的東海南部海域以台灣暖流水水團為主。細菌現存量約為3-16 x105 cells ml-1,SE與BE之數量經檢定並沒有差異。總微細鞭毛蟲數量大約1592.67 cells ml-1,而色素型鞭毛蟲數量較異營性微細鞭毛蟲多,平均約為1112 cells ml-1。其中著鞭毛蟲在SE之平均數量440 cells ml-1,在BE為 202 cells ml-1;整體平均為321 cells ml-1。大約佔色素型微細鞭毛蟲29.7 %。以體型大小分三個族群( < 3 μm、3-5 μm及> 5 μm),其中以中型之著鞭毛蟲(3-5 μm)佔最多量,約53 %。著鞭毛蟲之個體攝食速率在SE約28.02 bac Hap-1 mL-1。在BE,其攝食率約為41.74 bac Hap-1 mL-1。平均約可移除細菌現存量1.56 %。結果顯示,表底層攝食率經檢定後均沒有差異(t-test, p > 0.05)。SE及BE攝食率分開與環境因子進行相關性分析,發現僅BE攝食率與細菌關係良好性(p < 0.05)。
  再次證實混營性著鞭毛蟲攝食不會受到光線影響。其次本海域夏季實際上大部分受貧營養鹽之台灣暖流水水團所覆蓋,營養鹽NO3濃度大多< 1 μm,並無明顯營養鹽梯度存在。因此著鞭毛蟲無法發現與營養鹽等環境因子有密切的關係。並且在現場細菌數量< 6×105 cells mL-1時,餌料濃度不足,攝食率集中在一個範圍變動。而> 6×105 cells mL-1時,餌料濃度充足,其攝食率明顯增加。
Nanoflagellates, 2-20 μm in size, are unicellular eukaryotes. The mixotrophic nanoflgellates are dominant among nanoflagellates and control the abundance of marine bacteria by grazing in some pelagic environments. It has been confirmed that haptophytes are most important bacterivory among the mixotrophic nanoflgellates. In this study, our stations were located on a line stretching from Matsu to the Kuroshio in southern East China Sea, witha salinity gradient from coast to offshore andwith clear nutrient change due to upwelling. The purpose of this study was to find out the impact of haptophyte ingestion rates on bacteria under different nutrient concentrations. We conducted the experiments in three cruises (OR2- cr2039, cr2046, cr2053) during July, August and September in the southern East China Sea, using tyramide signal amplification-Fluorescence in situ hybridization (TSA-FISH) to identify the specific flagellates (haptophytes). The grazing experiments were performed in surface (SE) and bottom (BE) euphotic zones in this study.
  From the T-S diagram, the Taiwan Warm Current is the main water mass in the southern East China Sea. The abundance of bacteria in this area was about 3-16 x105 cells ml-1. There was no significant difference in the bacteria abundance between SE and BE. Thrtotal nanoflgellates abundance was approximately 1592.67 cell ml-1. The abundance of pigmented nanoflgellates (1112 cell ml-1) was higher than that of heterotrophic nanoflgellates. The haptophyte abundance was about 440 cell ml-1 and 202 cell ml-1 in SE and BE, respectively. The average haptophytes abundance was 321 cell ml-1 which was 29.7 % of the total pigmented nanoflgellates. The medium cell sized haptophytes were the most abundant (53 %) and were divided into three cell size categories (< 3 μm, 3-5 μm and > 5 μm). The haptophyte ingestion rates were approximately 28.02 bac Hap-1 mL-1 and 41.74 bac Hap-1 mL-1 in SE and BE, respectively. In average haptophytes removed 1.56 % of the bacteria abundance. There was no significant difference in the haptophyte ingestion rates between SE and BE (t-test, p > 0.05). The ingestion rates were positively correlated with bacteria abundance in BE.
 We confirmed that the ingestion rates of mixotrophic nanoflgellates was not affected by light intensity. There was no apparent nutrient gradient in the waters surveyed by our cruises. Therefore, there was no clear relationship between the haptophyte ingestion rates and nutrient concentration. Furthermore, the haptophyte ingestion rates were not changed distinctly when the abundance of bacteria was less than 6×105 cells mL-1. The haptophyte ingestion rates increased significantly when the prey concentration was sufficient (> 6×105 cells mL-1).
摘要 I
Abstract II
目次 III
圖目次 IV
表目次 V
第一章 前言 1
第二章 材料方法 4
2-1 研究區域與採樣 4
2-2 色素型及非色素型微細鞭毛蟲 4
2-3 利用螢光原位雜合法計數著鞭毛蟲 4
2-4 螢光標識細菌的備製 5
2-5 添加FLB之攝食實驗及現場細菌採樣 5
2-6 數值檢定及作圖方法 7
第三章 結果 8
3-1 SE及BE平均水文背景 8
3-2微細鞭毛蟲、著鞭毛蟲與細菌於SE及BE平均現場數量分布及其大小組成 8
3-3 著鞭毛蟲於SE及BE之攝食情況 9
第四章 討論 11
4-1著鞭毛蟲攝食速率在各測站之間的空間變動 11
4-2夏季東海南部海域著鞭毛蟲攝食情況 11
4-3東海南部海域夏季著鞭毛蟲攝食特色之探討 11
4-4著鞭毛蟲攝食之重要性 12
第五章 結論 14
參考文獻 15
圖一、OR2-2039、OR2-2048、OR2-2053之採樣位…………………………….....22
圖二、採樣期間有光層表層及底層溫鹽圖(T-S diagram)。●七月(OR2-2039),△八月(OR2-2048),□九月(OR2-2053) …………………………..........................23
圖三、採養時間有光層表層(SE)及有光層底層(BE)之溫度(Temperature, oC)與鹽度(Salinity, psu)。…………………………...…………………………...............24
圖四、有光層表層(SE)及底層(BE),葉綠素(a; Chl α, mg m-3)、硝酸(b; NO3, μM)、亞硝酸(c; NO2, μM)、磷酸(d; PO4, μM)。(t-test,*:p < 0.05)………………...25
圖五、7、8、9月份平均微細鞭毛蟲(a; cells ml-1)、色素型鞭毛蟲(b: cells ml-1)與異營性鞭毛蟲(c: cells ml-1)之數量變化………………………….................26
圖六、7、8、9月份於有光層表層(SE)及底層(BE)之現場著鞭毛蟲(a: cells ml-1)與現場細菌平均數量(b: 105 cells ml-1)變化………………………..............27
圖七、有光層表層(a)及底層(b),著鞭毛蟲(Hap)佔色素型微細鞭毛蟲(PNF)數量之百分比圖…………………………...…………………………...................28
圖八、有光層表層(SE)及有光層底層(BE)之著鞭毛蟲不同體型大小(< 5、3-5、< 3)所佔百分比…………………………...…………………………...................29
圖九、7、8、9月於有光層表層(SE)及有光層底層(BE)著鞭毛蟲個體攝食率(Bac Hap-1 h-1) …………………………...………………………….......................30
圖十、著鞭毛蟲攝食率(a,d,g)、著鞭毛蟲數量(b,e,h)與細菌數量變化圖(c,f,i)。SE與BE攝食率經過差異性檢定(t-test, *p < 0.05) …………………………...31
圖十一、7、8、9月,有光層表層(SE)著鞭毛蟲個體攝食率(Bac Hap-1 h-1)與NO3(μM)之關係圖…………………………...………………………….....................32
圖十二、有光層表層(SE)及有光層底層(BE)之著鞭毛蟲個體攝食速率(Bac Hap-1 h-1)與現場溫度(Temperature, oC)之關係圖………………………….........33
圖十三、東海海域(2014年7月)、基隆嶼近海(2012年7月2013年8月)與本次研究著鞭毛蟲攝食率(Bac Hap-1 h-1)與NO3(μM)之關係圖(a)。NO3 < 1 μM時,現場細菌濃度與著鞭毛蟲個體攝食率(Bac Hap-1 h-1)之關係圖(b)………………………………………………………………………….34
圖十四、東海(2014年7月)、基隆嶼(2012年7月-2013年8月)與東海南部現場細菌濃度(105 cells mL-1)與著鞭毛蟲個體攝食率(Bac Hap-1 h-1)之關係………………………………………………………………………….35
表一、採樣點之現場溫度,著鞭毛蟲個體攝食速率與環境因子之相關性分析..19
表二、採樣點之現場溫度,有光層表層(a)及有光層底層(b)之著鞭毛蟲個體攝食速率個別與環境因子相關性分析……………………………………….….20
表三、本研究與其他海域之究期間(time)、著鞭毛蟲數量(abundance)及著鞭毛蟲個體攝食率(ingestion rates)之比較表。ND表示沒有資料…………………21
Andersson A, Falk S, Samuelsson G & Hagström Å (1989) Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp. Microbial ecology 17: 251-262.
Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L & Thingstad F (1983) The ecological role of water-column microbes in the sea. Marine ecology progress series Oldendorf 10: 257-263.
Beardsley R, Limeburner R, Yu H & Cannon G (1985) Discharge of the Changjiang (Yangtze river) into the East China sea. Continental Shelf Research 4: 57-76.
Berninger UG, Caron DA & Sanders RW (1992) Mixotrophic algae in three ice‐covered lakes of the Pocono Mountains, USA. Freshwater Biology 28: 263-272.
Bird DF & Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231: 493-495.
Bloem J, Ellenbroek FM, Bär-Gilissen M-JB & Cappenberg TE (1989) Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and by thymidine incorporation. Applied and environmental microbiology 55: 1787-1795.
Caron D, Dam H, Kremer P, Lessard E, Madin L, Malone T, Napp J, Peele E, Roman M & Youngbluth M (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Research Part I: Oceanographic Research Papers 42: 943-972.
Christaki U, Van Wambeke F & Dolan JR (1999) Nanoflagellates(mixotrophs, heterotrophs and autotrophs) in the oligotrophic eastern Mediterranean: standing stocks, bacterivory and relationships with bacterial production. Marine Ecology Progress Series 181: 297-307.
Christaki U, Giannakourou A, Van Wambeke F & Grégori G (2001) Nanoflagellate predation on auto-and heterotrophic picoplankton in the oligotrophic Mediterranean Sea. Journal of Plankton Research 23: 1297-1310.
Ducklow HW & Carlson CA (1992) Oceanic bacterial production. Advances in microbial ecology,p.^pp. 113-181. Springer.
Fuhrman JA (1992) Novel major archaebacterial group from marine plankton. Nature 356: 148-149.
Fuller NJ, Tarran GA, Cummings DG, Woodward EMS, Orcutt KM, Yallop M, Le Gall F & Scanlan DJ (2006) Molecular analysis of photosynthetic picoeukaryote community structure along an Arabian Sea transect. Limnology and Oceanography 51: 2502-2514.
Goldman JC & Caron DA (1985) Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Research Part A Oceanographic Research Papers 32: 899-915.
Gong G-C, Chen Y-LL & Liu K-K (1996) Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research 16: 1561-1590.
Granda AP & Álvarez RA (2008) The annual cycle of nanoflagellates in the Central Cantabrian Sea (Bay of Biscay). Journal of Marine Systems 72: 298-308.
Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquatic microbial ecology 28: 279-288.
Iturriaga R & Siegel DA (1989) Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea. Limnology and Oceanography 34: 1706-1726.
Johnson PW & Sieburth JM (1979) Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1. Limnology and oceanography 24: 928-935.
Jones HL, Leadbeater B & Green J (1993) Mixotrophy in marine species of Chrysochromulina (Prymnesiophyceae): ingestion and digestion of a small green flagellate. Journal of the Marine Biological Association of the United Kingdom 73: 283-296.
Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshwater Biology 45: 219-226.
Landry M, Haas L & Fagerness V (1984) Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Marine ecology Progress series 16: 127-133.
Li W, Rao S, Harrison W, Smith J, Cullen J, Irwin B & Platt T (1983) Autotrophic picoplankton in the tropical ocean. Science(Washington) 219: 292-295.
Liu KK, Gong GC, Shyu CZ, Pai SC, Wei CL & Chao SY (1992) Response of Kuroshio upwelling to the onset of the northeast monsoon in the sea north of Taiwan: observations and a numerical simulation. Journal of Geophysical Research: Oceans (1978–2012) 97: 12511-12526.
McManus GB & Fuhrman JA (1988) Control of marine bacterioplankton populations: measurement and significance of grazing. Hydrobiologia 159: 51-62.
Nygaard K & Tobiesen A (1993) Bacterivory in algae: a survival strategy during nutrient limitation. Limnology and Oceanography 38: 273-279.
Porter KG & Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora1. Limnology and oceanography 25: 943-948.
Rothhaupt KO (1996) Utilization of substitutable carbon and phosphorus sources by the mixotrophic chrysophyte Ochromonas sp. Ecology 706-715.
Safi KA & Hall JA (1997) Factors influencing autotrophic and heterotrophic nanoflagellate abundance in five water masses surrounding New Zealand. New Zealand journal of marine and freshwater research 31: 51-60.
Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. The Journal of protozoology 38: 76-81.
Sanders RW, Porter KG & Bennett SJ (1990) Heterotrophic, autotrophic, and mixotrophic nanoflagellates: seasonal abundances and bacterivory in a eutrophic lake. Limnology and Oceanography 35: 1821-1832.
Sanders RW, Berninger U-G, Lim EL, Kemp PF & Caron DA (2000) Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank. Marine Ecology Progress Series 192: 103-118.
Sherr B (1989) Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar Ecol Prog Ser 54: 209-219.
Sherr E & Sherr B (1993) Protistan grazing rates via uptake of fluorescently labeled prey.
Sieburth JM, Smetacek V & Lenz J (1978) Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions 1. Limnology and oceanography 23: 1256-1263.
Simon N, Campbell L, Örnȯlfsdȯttir E, Groben R, Guillou L, Lange M & Medlin LK (2000) Oligonucleotide Probes for the Identification of Three Algal Groups by Dot Blot and Fluorescent Whole‐Cell Hybridization. Journal of Eukaryotic Microbiology 47: 76-84.
Stoecker DK & Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. Journal of Plankton Research 12: 891-908.
Tsai A-Y, Gong G-C, Sanders RW, Wang C-J & Chiang K-P (2010) The impact of the Changjiang River plume extension on the nanoflagellate community in the East China Sea. Estuarine, Coastal and Shelf Science 89: 21-30.
Tsai A-Y, Gong G-C, Chiang K-P, Chao C-F & Guo H-R (2011) Long-term (1998–2007) trends on the spatial distribution of heterotrophic ciliates in the East China Sea in summer: effect of the Three Gorges Dam construction. Journal of oceanography 67: 725-737.
Unrein F, Massana R, Alonso-Sáez L & Gasol JM (2007) Significant year‐round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnology and Oceanography 52: 456-469.
Unrein F, Gasol JM, Not F, Forn I & Massana R (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. The ISME journal 8: 164-176.
Wikner J & Hagström Å (1991) Annual study of bacterioplankton community dynamics. Limnology and oceanography 36: 1313-1324.
谷耘. (2014). 有光層表底層光線之改變是否會影響混營性著鞭毛蟲(Haptophyta)
   攝食細菌的速度? 國立台灣海洋大學碩士論文. 37. PP.
宋沛庭. (2015). 東海海域著鞭毛藻(Haptophyta)數量分佈及其攝食速率之研究. 國立台灣海洋大學碩士論
電子全文
全文檔開放日期:2015/07/15
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *