字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:許家豪
研究生英文姓名:Hsu, Chia-Hao
中文論文名稱:304L不鏽鋼板材及308L不鏽鋼銲道之鹽霧應力腐蝕研究
英文論文名稱:The Stress corrosion cracking of 304L and 308L stainless steel weld metal in salt-spray environment
指導教授姓名:蔡履文
口試委員中文姓名:教授︰李驊登
教授︰黃嘉宏
業界委員︰郭榮卿
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學號:10255004
請選擇論文與海洋研究相關度:間接相關
請選擇論文為:學術型
畢業年度:104
畢業學年度:103
學期:
語文別:中文
論文頁數:90
中文關鍵詞:鹽霧應力腐蝕不鏽鋼銲件滾軋敏化處理極化掃描
英文關鍵字:salt spraystress corrosion crackingweldingcold-rolledsensitization treatmentelectrochemical polarization tests
相關次數:
  • 推薦推薦:0
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本研究為將304L板材及308L銲道先經滾軋處理後進行敏化,模擬銲道的敏化現象。後續將試片置入於80℃-5wt%之加熱鹽霧環境之中,觀察不同試件之應力腐蝕龜裂之劣化機制及重量損失試驗,探討304L不銹鋼及308L銲道試件組織對其應力腐蝕破裂之影響。實驗結果顯示,U型彎曲試件及重量損失試片在鹽霧環境中進行288hr測試,滾軋試件裂縫起始主要呈現穿晶破裂特徵,易從交叉滑移帶產生侵蝕並生成裂縫。經過滾軋敏化試件表面晶界嚴重弱化,表面產生大量的沿晶應力腐蝕。308L原始銲道滾軋試件侵蝕主要發生在凝固組織周圍及周圍產生的滑移帶上,再沿著骨骼狀凝固組織破裂。經過滾軋敏化試片,表面滑移帶雖大量減少,但破裂模式仍是沿著凝固組織破裂。重量損失試驗中也觀察到304L滾軋試片主要沿著滑移帶產生蝕孔且表面蝕孔較為完整。經過滾軋敏化後試片,則在蝕孔周圍觀察到微裂縫的產生。308L銲道滾軋試片及滾軋敏化試片仍是沿著骨骼狀凝固組織周圍產生侵蝕,且重量損失和彎曲試驗相比,發現重量損失越嚴重表面的破裂程度也隨之升高。透過電化學循環動態極化試驗,發現結果與重量損失較為相似,304L滾軋試件蝕孔皆出現在滑移帶交界處,而滾軋敏化試片蝕孔周圍產生微小裂縫產生,308L滾軋及滾軋敏化仍是沿著滑移帶周圍進行侵蝕,從腐蝕電流與重量損失相比,滾軋敏化後試片腐蝕電流及重量損失皆相對較大。最後將三個實驗結合推測出,在有應力的環境下,蝕孔優先產生在差錯滑移帶上再沿著蝕孔之間延伸產生嚴重的應力腐蝕。
In this research, ER 308L was utilized as the filler metals for the welds of a 304L stainless steel(SS) substrate, which was prepared via a tungsten arc-welding process in multiple passes. The part of sample are cold-rolled (20% thickness reduction) and others been sensitization treatment (650℃/10 h). the sample of U-bend and weight loss tests were conducted by testing the SS substrate and welds in a salt spray contain ing 5wt% NaCl at 80℃ to evaluate their stress corrosion cracking (SCC) susceptib ility. The weight loss test results indicate that CW and CWS are worst in a salt spray environment and the corrosion is focus on the surface of slip plane. the SS just pitting corrosion on surface. The U-bend test indicate cold-rolling and sensitization treatment will promote the fracture of sensitivity. On the other hand, the dissolution of 308 deposits is focus on skeletal structure. Eventually, no matter weight-loss test or electrochemical polarization tests, the worst of sample is sensitization treatment.
中文摘要 I
ABSTRACT II
目錄 III
表目錄 V
圖目錄 VI
第一章 前言 3
第二章 文獻回顧 4
2-1 不銹鋼之簡介與特性 4
2-2 沃斯田鐵系不銹鋼之強化機構 4
2-3 沃斯田鐵系不銹鋼熱敏化 4
2-4 麻田散鐵相變態之特性 5
2-5沃斯田鐵系不鏽鋼之凝固行為 6
2-6沃斯田鐵系不鏽鋼之凝固組織形貌 7
2-7 元素對沃斯田鐵系不銹鋼性質之影響 7
2-8 304L不銹鋼之性質 8
2-9 沿晶腐蝕理論 9
2-10 孔穴腐蝕(PITTING CORROSION) 10
2-11 應力腐蝕破裂 10
2-12 應力腐蝕破裂生長機制 11
2-13 電化學測試法(ELECTROCHEMICAL POLARIZATION TESTS) 12
2-14 鈍化及鈍化膜 12
第三章 實驗儀器及方法 28
3-1 實驗材料 28
3-2 實驗流程 28
3-3 實驗組織觀察 28
3-4 微硬度及肥粒鐵量測 28
3-5 U-BEND鹽霧試驗 29
3-6 重量損失試驗 29
3-7 電化學循環動態極化試驗 29
第四章 實驗結果與討論 44
4-1 顯微組織觀察 44
4-2 硬度及磁性量測 44
4-3 鹽霧重量損失及金相觀察 45
4-4 彎曲試片鹽霧金相觀察 46
4-5 電化學循環動態極化試驗 48
4-6 電化學循環動態極化試驗金相觀察 49
第五章 結論 76
第六章 參考文獻 77
1.Chiang, M.F., et al., Mechanical degradation of cold-worked 304 stainless steel in salt spray environments. Journal of Nuclear Materials, 2012. 422(1–3): pp. 58-68.
2.Davis, J.R. and A.S.M.I.H. Committee, Nickel, Cobalt, and Their Alloys. 2000: ASM International.
3.Porter, D.A. and K.E. Easterling, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint). 1992: Taylor & Francis.
4.BY W. LIN, J.C.L.A.W.A.B.I., An Evaluation of Heat-Affected Zone Liquation Cracking Susceptibility, Part I: Development of a Method for Quantification WELDING RESEARCH 1993
5.劉志林, 屈.林., 奧氏體不銹鋼晶間腐蝕. 遼寧工學院學報, 2007. 27(1674-3261).
6.Mannan, S.K., et al., Influence of deformation on sensitization kinetics and its microstructural correlation in a nuclear grade 316 stainless steel. Journal of Nuclear Materials, 1984. 126(1): pp. 1-8.
7.Parvathavarthini, N., et al., Continuous cooling and low temperature sensitization of AISI Types 316 SS and 304 SS With different degrees of cold work. Journal of Nuclear Materials, 1989. 168(1–2): pp. 83-96.
8.Parvathavarthini, N., R.K. Dayal, and J.B. Gnanamoorthy, Influence of prior deformation on the sensitization of AISI Type 316LN stainless steel. Journal of Nuclear Materials, 1994. 208(3): pp. 251-258.
9.R. K. Dayal, N.P., J. B. Gnanammoorthy, Symposium on localised corrosion and environmental cracking. 1997.
10.Pednekar, S. and S. Smialowska, The Effect of Prior Cold Work on the Degree of Sensitization in Type 304 Stainless Steel. Corrosion, 1980. 36(10): pp. 565-577.
11.T. Akiyama, T.T., and H. Komeda,, Journal of the Japan Institute of Metals and Materials, 1988: pp. 1137-1143.
12.Gianni Rondelli, B.M., Tommaso Pastore, Bruno Vicentini, Study on the Intergranular Corrosion of Cold Worked Austenitic Stainless Steels. 1986. 8: pp. 593-604.
13.Pascali, R., A. Benvenuti, and D. Wenger, Carbon Content and Grain Size Effects on the Sensitization of AISI Type 304 Stainless Steels. Corrosion, 1984. 40(1): pp. 21-32.
14.Beltran, R., et al., Effects of strain and grain size on carbide precipitation and corrosion sensitization behavior in 304 stainless steel. Acta Materialia, 1997. 45(10): pp. 4351-4360.
15.Beltran, R., et al., Combined effects of strain and grain size on carbide precipitation and sensitization in 304 stainless steel. Scripta Metallurgica et Materialia, 1994. 30(8): pp. 1021-1025.
16.Parvathavarthini, N. and R.K. Dayal, Influence of chemical composition, prior deformation and prolonged thermal aging on the sensitization characteristics of austenitic stainless steels. Journal of Nuclear Materials, 2002. 305(2–3): pp. 209-219.
17.L. Collini, G.N.a.E.R., Fatigue Notch Behavior of Gray Cast Iron Metals Handbook 9th, 1985: p. 688.
18.Brown, R.L., A review of: “STEELS: HEAT TREATMENT AND PROCESSING PRINCIPLES” by G. Krauss ASM International 497 pages, Second Edition, hard cover, $75, 1990. Materials and Manufacturing Processes, 1991. 6(3): pp. 569-570.
19.W. K. Honeycombe and H. K. D. H Bhadeshia, Steels: Microstructure and Properties 2nd. 1995: p. 38.
20.Cohen, M., The Strengthening of Steel. Trans TMS-AIME, 1962. 224: p. 638.
21.Petty, J.W.C.a.E.R., Martensite: Fundamentals and Technology. 1970: p. 13.
22.Speich, G.R., Metallurgical and Materials Transactions A, 1972. 3: pp. 1045.
23.V. Shankar, T.P.S.G., S. L. Mannan and S. Sundaresan, Solidification cracking in austenitic stainless steel welds. 2003. 28: pp. 359-382.
24.Suutala, N., T. Takalo, and T. Moisio, The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds. Metallurgical Transactions A, 1979. 10(4): pp. 512-514.
25.Inoue, H., et al., Solidification and transformation behaviour of austenitic stainless steel weld metals solidified as primary ferrite: Study of solidification and subsequent transformation of Cr-Ni stainless steel weld metals (2nd Report). Welding International, 1997. 11(12): pp. 937-949.
26.Suutala, N., T. Takalo, and T. Moisio, Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 1980. 11(5): pp. 717-725.
27.Davis, J.R., Corrosion of Weldments. ASM International.
28.R.W. Cahn, P.H., E.J. Kramer, Materials Science and Technology A, 1991. 7: p. 615.
29.陳泰吉, 冷軋301不銹鋼在氫氣中之缺口拉伸強度及疲勞裂縫成長特性研究, in 材料科學與工程學研究所. 2009, 臺灣大學. pp. 1-110.
30.W. Lin, J.C.L.a.W.B.I., Metal Transfer in Pulsed Current Gas Metal Arc Welding Welding research suppenment, 1993: pp. 135-153.
31.Nicholls, B.W.a.J.M., S51-54-ENG. Sandvik Steel Report, 1994. 1.
32.Alyousif, O.M. and R. Nishimura, On the Stress Corrosion Cracking and Hydrogen Embrittlement Behavior of Austenitic Stainless Steels in Boiling Saturated Magnesium Chloride Solutions. International Journal of Corrosion, 2012.
33.Angel, T., formation of martensite in austenitic stainless steels 1954. 177:pp. 165-174.
34.Maxwell, P.C., A. Goldberg, and J.C. Shyne, Stress-Assisted and strain-induced martensites in FE-NI-C alloys. Metallurgical Transactions, 1974. 5(6): pp. 1305-1318.
35.Maxwell, P.C., A. Goldberg, and J.C. Shyne, Influence of martensite formed during deformation on the mechanical behavior of Fe-Ni-C Alloys. Metallurgical Transactions, 1974. 5(6): pp. 1319-1324.
36.Hennessy, D., G. Steckel, and C. Altstetter, Phase transformation of stainless steel during fatigue. Metallurgical Transactions A, 1976. 7(3): p. 415-424.
37.Lecroisey, F. and A. Pineau, Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system. Metallurgical Transactions, 1972. 3(2): pp. 391-400.
38.Fujita, H. and S. Ueda, Stacking faults and f.c.c. (γ) → h.c.p. (ϵ) transformation in 188-type stainless steel. Acta Metallurgica, 1972. 20(5): pp. 759-767.
39.The strain induced martensite transformation in austenitic stainless steels: Part 1 – Influence of temperature and strain history. Materials Science and Technology, 2009. 25(1): pp. 7-17.
40.Lee WS, L.C., The morphologies and characteristics of impact-induced martensite in 304L stainless steel. Scripta Mater, 2000. 43: p. 777.
41.Das, A., et al., Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel. Materials Science and Engineering: A, 2008. 486(1): pp. 283-286.
42.Fukuda, T., T. Kakeshita, and K. Kindo, Effect of high magnetic field and uniaxial stress at cryogenic temperatures on phase stability of some austenitic stainless steels. Materials Science and Engineering: A, 2006. 438–440(0): pp. 212-217.
43.M. umbert, B.P., Bolle and N. Gey 2007. 454: p. 508.
44.A.Pineau, F.L.a., Metall. Trans, 1972. 12: p. 391.
45.Phanindra, S.D. and A.H.S. Reddy, Electrochemical analysis of austenitic stainless steel of type 304L SS in nitric acid medium. 2013. p. 44.
46.Cunha Belo, M.D., C. Bombart, and P. Berge, Intergranular Corrosion of Type 304 Stainless Steel and Alloy 600 in Aqueous Solutions Containing SO2. Corrosion, 1983. 39(7): pp. 279-284.
47.Anst, R.F.H.a.K.T., Scr. Inotall, 1968. 2: p. 235.
48.Engell, K.O.a.H.J., Corrosion Science, 1966. 6: p. 389.
49.Kinzell, A.B., Trans. Met. Soc., 1952. 194: p. 469.
50.涂成一, 雙相不銹鋼之局部腐蝕性質研究, in 材料科學(工程)研究所. 1994, 國立成功大學: 台南市. p. 0.
51.Anst, R.F.H.a.K.T., Scr. Inotall, 1986. 2: p. 235.
52.Armijo, J.S., Corrosion Science, 1967. 7: pp. 143-146.
53.T. Prosek, A.I., C. Taxen, and D. Thierry, Corrosion, 2009. 65: pp. 105-117.
54.柯賢文, 腐蝕及其防制, 1994: pp. 166、123、189.
55.江家慶, 潛變、應力腐蝕與銲接裂紋之特論, in 機械與輪機工程學系. 2000, 國立海洋大學: 基隆市. pp. 176.
56.劉富雄, 防蝕技術, 1999: pp. 2-13.
57.蔡文達、李汝桐、項裕德和朱鴻源, 行政院國家科學委員會防災科技研究報告, 1988: pp. 5-10.
58.Mechanism of Intergranular Corrosion of Austenitic Stainless Steels—Literature Review. British Corrosion Journal, 1971. 6(3): pp. 100-108.
59.Chin.J.Chem.Eng., 1998. 6(2): p. pp130-137.
60.Hanninen., Metals Rew. H E Int., 1979. 30: p. 85.
61.許淳淳, 歐., 徐瑞芬,吳永欣, 中國腐蝕與防護學報, 1997. 17(1): pp. 73.
62.Seetharaman, V. and R. Krishnan, Influence of the martensitic transformation on the deformation behaviour of an AISI 316 stainless steel at low temperatures. Journal of Materials Science, 1981. 16(2): pp. 523-530.
63.Wranglen, G., Pitting and sulphide inclusions in steel. Corrosion Science, 1974. 14(5): pp. 331-349.
64.Lai, C.L., et al., The effects of cold rolling and sensitisation on hydrogen embrittlement of AISI 304L welds. Corrosion Science, 2010. 52(4): pp. 1187-1193.
65.林育如, 304L不銹鋼軋延組織之氫脆特性研究, in 材料工程研究所. 2010, 國立臺灣海洋大學: 基隆市. p. 76.
66.Hedayati, A., et al., The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. Journal of Materials Processing Technology, 2010. 210(8): pp. 1017-1022.
67.Khan, S.H., et al., Eddy current detection of changes in stainless steel after cold reduction. Computational Materials Science, 2008. 43(4): pp. 623-628.
68.Olson, G.B. and M. Cohen, A mechanism for the strain-induced nucleation of martensitic transformations. Journal of the Less Common Metals, 1972. 28(1): pp. 107-118.
69.Lai, C.L., et al., Notched tensile tests of cold-rolled 304L stainless steel in 40 wt.% 80 °C MgCl2 solution. Corrosion Science, 2009. 51(2): pp. 380-386.
70.Alvarez, S.M., A. Bautista, and F. Velasco, Influence of strain-induced martensite in the anodic dissolution of austenitic stainless steels in acid medium. Corrosion Science, 2013. 69(0): pp. 130-138.
71.Krishnan, K.N. and K.P. Rao, Room-Temperature Stress Corrosion Cracking Resistance of Post-Weld Heat-Treated Austenitic Weld Metals. Corrosion, 1990. 46(9): pp. 734-742.
72.Pohjanne, P., et al., A method to predict pitting corrosion of stainless steels in evaporative conditions. Journal of Constructional Steel Research, 2008. 64(11): pp. 1325-1331.
73.Zuojia LIU, X.C., Shengjie LU, Xiaogang LI, Effect of chloride ions on 316L stainless steel in cyclic cooling water. Acta Metallurgica Sinica(English letters), 2010. 23(6): pp. 431-438.
74.Ravi Kumar, B., B. Mahato, and R. Singh, Influence of Cold-Worked Structure on Electrochemical Properties of Austenitic Stainless Steels. Metallurgical and Materials Transactions A, 2007. 38(9): pp. 2085-2094.
75.Fu, Y., et al., Effects of cold work and sensitization treatment on the corrosion resistance of high nitrogen stainless steel in chloride solutions. Electrochimica Acta, 2009. 54(5): pp. 1618-1629.
76.Raja, K.S. and K.P. Rao, Effect of Applied Potentials on Room Temperature Stress Corrosion Cracking of Austenitic Stainless Steel Weldments. Corrosion, 1992. 48(8): pp. 634-640.
77.Fang, Z., Y. Wu, and R. Zhu, Stress Corrosion Cracking of Type 304 Stainless Steel Weldments in the Active State. Corrosion, 1994. 50(3): pp. 171-175.
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *