字體大小: 字級放大   字級縮小   預設字形  


研究生英文姓名:Huang, Tai-Hsiang
中文論文名稱:64 X 64 陣列式紅外線感測元件之製作與研究
英文論文名稱:Fabrication and Characterization of suspended bridge 64 X 64 infrared detector array
英文關鍵字:Infrared detectorBolometerSupercritical fluid dyeing
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
本論文利用微機電製程技術來製作微橋結構的紅外線感測元件,並利用光學諧振腔結構之目的來減少元件的熱傳導及增強對特定波長之紅外線吸收。在主要感測材料上,本論文以特定比例之釕氧化物混合鋁氧化物來製作感測層之靶材。本材料在紅外線感測元件分類上屬於熱敏阻元件,在射頻磁控濺鍍系統中以16 mtorr和120℃的條件下鍍膜可以達到較好的TCR值。

本論文為了增加單位面積所涵蓋的元件數量,將每顆元件的尺寸由50 μm x 60 μm改成23 μm x 34 μm來進行感測元件的解析度的增加及有效面積之提升。因為元件縮小,導致懸浮的支撐點變得過小,更必須考慮到表面張力的作用,使得製程懸浮良率變成七成多,所以本實驗導入超臨界乾燥製程,將感測元件的懸浮良率提升至將近100 %。

在理論上,由於公式C = K ∙τ ,讓熱傳導K在不變的狀態下,元件熱容縮小會使得元件的響應時間變得更短反應變快。另一方面,在縮小元件尺寸面積後,聚焦可以變得更小,聚光度就能變得更強,且在相同面積內可以放入更多陣列,也加強解析度而量測影像的距離也可以測得更遠。

The study aims to use Micro electromechanical system (MEMS) processing technology to manufacture microbridge infrared sensor elements, and to reduce thermal conductance of the elements and increase the absorption of infrared of certain wave by making use of the optical resonant cavity structure. In terms of the main sensor material, Ruthenium oxides are mixed with Aluminum oxides to manufacture the target in the sensor layer. The material used is categorized as bolometer, and has better TCR when sputtered with the environment of 16 mtorr and 120 degree Celsius.

To increase the element number covered by per unit area, this study changes the size of each element from 50 μm x 60 μm to 23 μm x 34 μm. This can increase the resolution of the sensor element and its active area. However, smaller size of the element also leads to smaller support area of our suspended array. Together with surface tension, process yield drops to about seventy percent. Therefore, in this study, supercritical fluid dyeing is introduced and the process yield has thus increased to nearly 100%.

Theoretically, according to formula C = K ∙ τ , with thermal conductance K unchanged, the reduction of element heat capacity can result in shorter element response time, and thus, quicker response. On the other hand, with smaller element size, focus can also be smaller, which will then lead to stronger concentration. And with more arrays on per unit area, resolution can be enhanced, and image measurement distance can also be lengthened.

Key words: Infrared detector, Bolometer, Supercritical fluid dyeing
Chapter 1緒論 1
1-1 研究背景與動機 1
1-2 紅外線簡介 2
1-3紅外線感測器簡介 2
1-4論文概述 3
Chapter 2物理特性及理論 4
2-1黑體輻射 4
2-1.1 Planck定律 4
2-1.2 Stefan-Boltzmann 定律 5
2-1.3 Wien 位移定律 5
2-2 熱敏元件之原理 5
2-2.1 電阻溫度係數 6
2-2.2 響應度 6
2-2.3 薄膜電阻 6
2-2.4 雜訊等效功率 7
2-2.5 感測度 7
2-2.6 歸一化感測度 7
2-2.7 熱容 8
2-2.8熱傳導率 8
2-3 超臨界流體 8
Chapter 3紅外線感測元件製程介紹 10
3-1製程相關儀器介紹 10
3-1.1 基板的選擇與清洗 10
3-1.2 光罩設計 10
3-1.3 黃光微影製程 11
3-1.4 熱蒸鍍系統 12
3-1.5 射頻磁控濺鍍系統 12
3-1.6 濕式蝕刻 13
3-1.7 反應式離子蝕刻機 13
3-1.8 鑽石切割機 14
3-1.9 超臨界乾燥機 14
3-2 製程量測設備 14
3-2.1 掃描式電子顯微鏡 14
3-2.2 X-光繞射儀 15
3-2.3 膜厚量測儀 15
3-3 紅外線感測元件製程簡介 15
3-4 元件製程介紹 16
3-4.1 元件製程步驟 16
3-4.2 超臨界乾燥製程 21
3-5 RuOx-AlxOx靶材製作 22
Chapter 4 實驗結果與討論 23
4-1 RuOx-AlxOx粉末及薄膜特性分析 23
4-1.1 RuOx-AlxOx粉末特性分析 23
4-1.2 RuOx-AlxOx薄膜特性分析 23
4-2 感測元件OM及SEM量測 24
4-2.1 元件OM量測 24
4-2.2 元件SEM量測 26
4-3 感測器基本參數 26
4-4 元件縮小化設計 27
Chapter 5 結論 28
參考文獻 29

[1] G.J.Weil,”Computer-aided IR analysis of bridge deck delaminations,”Proceedings of the 5th IR information exchange,1985
[2] M.Kolahdouz,“The performance improvement evaluation for SiGe-based IR detectors ”,Solid-state Electronics (2011)72-76
[3] Fatith Bilge Atar,“Ge/SiGe Quantum Well p-i-n Structures for Uncooled Infrared Bolometers”,IEEE ELECTRON DEVICE LETTERS,Vol 32,(2011)
[4] 葉宇寰,“以熔膠-凝膠法及不同熱處理技術製備鉭酸鋰焦電薄膜紅外線感測器元件之研究”,國立中山大學電機工程系碩士論文,(2004)
[5] Sun Gyuchoi,“Application of mesoporous Tio2 as a thermal isolation layer for infrared sensors”,Thin solid Films(2007)212-215
[6] Tae-SikKim,“A Highly Sensitive Bolometer Structure with an Electrostatic-Actuated Signal Bridge”,IEEE TRANSACTIONS ON ELECTRON DEVICES,NO.9,SEPTEMPER 2006
[7] Nguyen Chi-Anh“Characterization of uncooled with vanadium tungsten oxide infrared active layer”,Sensors and Actuators A 123-124(2005)
[8] John E. Gray,“MgO Sacrificial Layer for Micromachining Uncooled Y-Ba-Cu-O IR Microbolometers on Si3N4 Bridges”,IEEE Journal of microelectromechanical systems,(1999)
[9] MisookAhn,“A novel infrared absorbing structure for uncooled infrared detector”,Current Applied Physics,(2007)617-621
[10] S.Yoneoka, M.Liger, G.Yama, R.Schuster, F.Purkl, J Provine, F.B.Prinz, R.T.Howe, T.W.Kenny,”ALD-METAL UNCOOLED BOLOMETER,”Proceedings of IEEE MEMS 2011(Cancun,Mexico,January 23-27,2011),pp.676-679
[11] Wen-Yaw Chung;Tai-PingSun;Yung-LungChin;Yuan-LiangKao,”Design of pyroelectric IR readout circuit based on LiTaO3 detectors”,IEEE International on ISCAS, Volume 4,12-15 May 1996
[12] Bluzer,N.;Forrester,M.G,”Quantum detectors in superconducting YBCO”,IEEE Transactional on Applied Superconductivity,Vol.5,No2,June 1995.
[13] Elder,Y.C.;Megretski,A.;Verghese,G.C,”Designing Optimal Quantum Detectors Via SemidefiniteProgramming”,IEEE Transactions on information theory,Vol.49,No.4,April 2003.
[14] Oda,S.;Anzai,M.;Uematsu,S.;Watanabe,K,”A silicon micromachined flow sensor using thermopiles for heat transfer measurements”,IEEE Transactions on Instrumentation and Measurements,Volume 52,Issue 4,Aug 2003.
[15] Liu Yueying,ShenDexin,ZhuZiqiang,”The design of adding beat reflective emitter coating on the cold region of infrared thermopiles”,Twenty-First International Conference on Thermoelectrics,Page(s)458-462,25-29 Aug 2002.
[16] Bae,S.Y.;Ki-wonYoon;George,T,”Fabrication and preliminary test results of BICEP(Background Imaging of Cosmic Extragalactic 44Polarization)bolometer”,IEEE International Conference on MicroElectro Mechanical Systems,Page(s):60-63,30 Jan 2005.
[17] Wolfe W.L. and Zissis G.J. 1989,The Infrared Handbook(Ann Arbor: Environmental Research Institute of Michigan) pp.7.78-7.80
[18] 賴耿陽, “紅外線工學-基礎與應用” 1995
[19] M.S.Ahn,Y.H.Han,H.J.Shin,K.T.Kim,S.H.Lee,S.Moonl,M.H.Oh,”A floated absorbing structure for uncooled microbolometer,”The 13th International Conference on SolidState Sensors Actuators and Microsystems, Seoul, Korea, June 5-9, 2005, pp.585-588.
[20] 鄒佩勳,“8x8微橋結構陣列式紅外線感測元件之響應時間分析與研究”,國立臺灣海洋大學碩士論文,2011
[21] John E. Gray,“MgO Sacrificial Layer for Micromachining Uncooled Y-Ba-Cu-O IR Microbolometers on Si3N4 Bridges”,IEEE Journal of microelectromechanical systems,(1999)
[22] R.J.Phelan, R.J. Mahler, and A.R. Cook, Appl. Phys. Lett.19,377(1971)
[23] A.Rogalski,Progress in Quantum Electronics 27, 59 (2003);J.Piotrowski, A.Rogalski, Infrared Phys. Technol.46,115(2004).
[24] L.Mechin, J.C. Vilegier ,D.Bloyet, IEEE Tran. Appl.Supercond.7(2),2382(1997).
[25] P.K. Weng, Technologies and Applications of Silicon Micro-Machining,PH.D. dissertation,NationalCHiao-Tung University,Taiwan,ROC,1992.
[26] R.W.Whatmore,”Pyroelectric devices and materials”,Rep. Prog Phys. 49 (1986)1335.
[27] J. Schieferdecker, R.Quad, E. Holzenkampfer, M, Schulze,”Infrared thermopile sensors with high sensitivity and very low temperature coefficient”, Sensors and Actuators A,46-47 p.422-427, 1995.
[29]黃昭穎,“以縮小像素面積提高32 x 32微橋結構陣列紅外線感測器之性能研究”,國立臺灣海洋大學碩士論文,2014
第一頁 上一頁 下一頁 最後一頁 top
* *