字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:吳易皇
研究生英文姓名:Wu, Yi-Huang
中文論文名稱:Agrobacterium sp. ATCC 31750 D-阿洛酮糖表異構酶之蛋白質工程及利用固定化菌體生產 D-阿洛酮糖
英文論文名稱:Protein Engineering of Recombinant D-Psicose 3-Epimerase from Agrobacterium sp. ATCC 31750 and the Production of D-Psicose by Immobilized Cells
指導教授姓名:方翠筠
口試委員中文姓名:教授︰曾文祺
助理教授︰林泓廷
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10232031
請選擇論文與海洋研究相關度:無相關
請選擇論文為:學術型
畢業年度:104
畢業學年度:103
學期:
語文別:中文
論文頁數:86
中文關鍵詞:D-阿洛酮糖D-阿洛酮糖表異構酶定位突變
英文關鍵字:D-psicoseD-psicose 3-epimeraseSite-directed mutation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏收藏:0
D-阿洛酮糖 (D-psicose) 為自然界中極少存在之稀有單醣,價格昂貴且具特殊生理活性,如應用於食品添加物取代蔗糖作為甜味劑及抑制肝臟脂肪合成酶以降低脂肪含量等功用,且美國食品藥物管理局 (Food and Drug Administration) 於 2012 年將其認可為一般安全性食品 (generally regarded as safe, GRAS),因此具發展之潛力。D-阿洛酮糖表異構酶 (D-psicose 3-epimerase, DPE) 可針對 D-果糖與 D-阿洛酮糖 3 號碳進行表異構化反應而相互轉換。本實驗室先前已選殖找出 Agrobacterium sp. ATCC 31750 D-psicose 3-epimerase (AsDPE) dpe 基因並將其轉形至 E. coli BL21-CodonPlus (DE3)-RIL 表現。由於 AsDPE 與 Agrobacterium tumefaciens (AtDPE) 基因序列有 98% 相似度,本研究透過 AtDPE 的結構模擬突變,期能提升酵素活性,結果發現突變型 Y6R 沒有活性、F185K 比活性降為 68 U/mg、F185Y 比活性降為 23 U/mg,M181R 及 F185R 皆變為不可溶蛋白而沉澱。
後續實驗改用不會產生內毒素反應之 CleanColi BL21 (DE3) 為表現宿主,透過海藻酸鈉固定化菌體,以利酵素的重複使用與提升酵素熱穩定性。結果發現以 CleanColi 為表現宿主會使酵素活性由 80 U/mg 降為 48 U/mg,含原生型 AsDPE 之固定化菌體無法提升熱穩定性。將固定化 CleanColi BL21 (DE3) AsDPE 以填充床反應器生產 D-阿洛酮糖,填以含有 50% D-果糖、50 mM Tris-HCl 緩衝液 (pH 8.0) 及 0.1 mM Co2+ 反應液,於 55oC 下反應,約2 小時候達平衡,轉換率約 30%。
D-Psicose is a rare monosaccharide in the nature which has special physiological functions being used as a food additive or sweetener but expensive. It has been announced as generally recognized as safe (GRAS) by Food and Drug Administration (FDA) in 2012. D-Psicose 3-epimerase (DPE) can catalyze the epimerization of D-fructose and D-psicose. The Agrobacterium sp. ATCC 31750 D-psicose 3-epimerase (AsDPE) dpe gene had been previously cloned and expressed in Escherichia coli BL21 CodonPlus (DE3)-RIL. According to the 98% homology between AsDPE and Agrobacterium tumefaciens (AtDPE), molecular modeling of the mutations of AtDPE was performed to choose the candidates for site-directed mutagenesis. The results have shown that mutant F185K and F185Y AsDPEs has specific activity of 68 U/mg and 23 U/mg, respectively.
AsDPE was then expressed in the nonendotoxin producing strain CleanColi BL21 (DE3) and the AsDPE containing immobilized cells were prepared for the reuse of the enzyme and improve enzyme’s thermostability. However, immobilized cells didn’t improve AsDPE’s thermostability as expected. Continuous production of D-psicose from D-fructose using AsDPE containing immobilized cells has been performed in packed-bed bioreactor. Substrate of 50% D-fructose in 50 mM Tris-HCl buffer (pH 8.0) plus 0.1 mM Co2+ was passed through the bioreactor at 55oC, and the convertion rate was about 30%. Under the reaction conditions, the epimerization reaction between D-fructose and D-psicose reached equilibrium after 2 h.
壹、 研究背景與目的 1
一、 研究背景 1
二、 研究目的 2
貳、 文獻整理 3
一、 稀有醣類 3
1. 簡介 3
2. 稀有醣類應用 3
3. 製備及生產 3
4. D-阿洛酮糖 (D-Psicose) 3
5. D-阿洛糖 (D-Allose) 5
二、 DTE-家族酶之研究 5
1. 簡介 5
2. 來源及特性 6
3. D-阿洛酮糖表異構酶 (D-psicose 3-epimerase, DPE) 6
三、 氫鍵對酵素之影響 8
1. 酵素與基質間之氫鍵 8
四、 CleanColi BL21 (DE3) 9
五、 固定化菌體 9
1. 固定化種類 9
2. 固定化材料 9
3. 界面活性劑 11
4. 固定化菌體優缺點 12
參、 實驗設計與流程 13
1. AsDPE 定位突變 Y6R、M181R、F185K、F185R 及 F185Y 對酵素活性及特性之影響 13
2. AsDPE 於 CleanColi 宿主之表現 13
3. 利用固定化菌體生產 D-psicose 13
肆、 實驗材料與方法 15
一、 實驗材料 15
1. 菌株與載體 15
2. 抗生素 15
3. 標準品 15
4. 蛋白質標準品 16
5. 市售套組 16
6. 酵素 16
7. 化學藥品 16
8. 實驗設備 18
二、 藥品配製 20
1. Luria-Bertani (LB) 培養液 20
2. Terrific broth (TB) 培養液 20
3. SOB 培養液 21
4. SOC 培養液 21
5. Ampicillin (100 mg/mL) 22
6. Chloramphenicol (34 mg/mL) 22
7. Bacillus transformation buffer 22
8. Bacillus recovery medium 22
9. DNA 瓊脂膠體製備 23
10. 製備定量蛋白質之相關試劑 23
11. SDS-PAGE 相關藥劑製備 24
三、 實驗方法 26
1. 定位突變 26
2. 轉形作用及重組質體之篩選 29
3. 重組型 DPE 之蛋白質表現與純化 32
4. 重組型 DPE 之活性分析與特性探討 36
5. 固定化菌體之活性分析與特性探討 40
伍、 結果與討論 44
陸、 結論 54
柒、 參考文獻 56
捌、 附錄 93


表目錄
表一、定位突變 PCR 引子序列…………………………………………………..65
表二、比較原生型及突變型 D-阿洛酮糖表異構酶於 E. coli 或 CleanColi 表現之酵素純化表………………………………………………………………………..66
表三、比較原生型及突變型 D-阿洛酮糖表異構酶於 E. coli 或 CleanColi 表現之酵素活性回收……………………………………………………………………..67
表四、原生型與突變型對 D-果糖之動力學參數………………………………….68
表五、含 AsDPE 固定化 CleanColi 及未固定化之 D-阿洛酮糖表異構酶活性及固定化效率………………………………………………………………………………………….69

圖目錄
圖一、模擬 Agrobacterium tumefaciens D-阿洛酮糖表異構酶距離基質 4 Å、5 Å 及 6 Å 之殘基………………………………………………………………………70
圖二、分子模擬基質與 AtDPE 突變殘基 (Y6R、M181R) 之結合……………71
圖三、分子模擬基質與 AtDPE 突變殘基 (F185Y、F185K) 之結合…………..72
圖四、分子模擬基質與 AtDPE 突變殘基 (F185Y、F185K) 之結合…………..73
圖五、DNE 膠電泳分析 Megaprimed-QCM 三階段定位突變產物…………….74
圖六、pET-21b-dpe 不同點突變部分核甘酸序列分析之圖譜…………………...75
圖七、以 SDS-PAGE 分析突變型 AsDPE 於不同濃度 IPTG 誘導在 E. coli BL21-CodonPlus (DE3)-RIL 表現之結果……………………………………….....76
圖八、以 SDS-PAGE 分析原生型及突變型 AsDPE 於 E. coli BL21-CodonPlus (DE3)-RIL 之各純化過程蛋白質分布與表現……………………………………..77
圖九、以液相層析串連低溫蒸發光散射檢測器分析 D-果糖經酵素反應後之產物組成…………………………………………………………………………………..78
圖十、溫度對原生型及突變型 F185K AsDPE 活性之影響……………………..79
圖十一、pH 值對原生型及突變型 F185K AsDPE 活性之影響………………...80
圖十二、原生型 AsDPE 對溫度之穩定性………………………………………..81
圖十三、計算原生型及突變型 F185K AsDPE 之活化能………………………..82
圖十四、以 SDS-PAGE 分析原生型 AsDPE 於不同濃度 IPTG 誘導在 CleanColi BL21 (DE3) 表現之結果………………………………………………...83
圖十五、以 SDS-PAGE 分析原生型 AsDPE 於 CleanColi BL21 (DE3) 之純化過程蛋白質分布與表現……………………………………………………………..84
圖十六、海藻酸鈉濃度對含有 AsDPE 固定化菌體活性之影響………………..85
圖十七、不同界面活性劑在不同濃度下對含 AsDPE 固定化菌體活性之影響..86
圖十八、不同細胞濃度對含 AsDPE 固定化菌體活性之影響…………………..87
圖十九、不同氯化鈣濃度對含 AsDPE 固定化菌體活性之影響………………..88
圖二十、溫度對含原生型 AsDPE 之固定化菌體及純化之原生型 AsDPE 活性比較…………………………………………………………………………………..89
圖二十一、pH 值對含原生型 AsDPE 之固定化菌體及純化之原生型 AsDPE 活性比較……………………………………………………………………………..90
圖二十二、含 AsDPE 之固定化菌體之熱穩定性………………………………..91
圖二十三、填充床反應器填充含 AsDPE 固定化菌體生產 D-阿洛酮糖之情形.92
陳昭南,2012,Agrobacterium sp. ATCC 31750 菌株所產阿洛酮糖表異構酶之基因選殖、表現、純化及特性探討,國立臺灣海洋大學食品科學系碩士論文,基隆。
王銘駿,2013,Agrobacterium sp. ATCC 31750 菌株經基因重組後所產阿洛酮糖表異構酶對於活性及特性之影響,國立臺灣海洋大學食品科學系碩士論文,基隆。
陳于君,2014,利用蛋白質工程改變 Thermonanerobacterium saccharolyticum NTOU1 L-鼠李糖異構酶的基質特異性,國立臺灣海洋大學食品科學系碩士論文,基隆。
許仲霆,2014,利用蛋白質工程提昇 D-阿洛酮糖表異構酶之活性回收及熱穩定性,國立臺灣海洋大學食品科學系碩士論文,基隆。
Allard S, Giraud M-F, Naismith J (2001) Epimerases: structure, function and mechanism. Cellular and Molecular Life Sciences CMLS 58: 1650-1665.
Baek S, Park S, Lee H (2010) D‐Psicose, a sweet monosaccharide, ameliorate hyperglycemia, and dyslipidemia in C57BL/6J db/db mice. Journal of Food Science 75: H49-H53.
Baker DC, Horton D, Tindall CG (1972) Large-scale preparation of D-allose: observations on the stereoselectivity of the reduction of 1, 2: 5, 6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose hydrate. Carbohydrate Research 24: 192-197.
Beerens K, Desmet T, Soetaert W (2012) Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology & Biotechnology 39: 823-834.
Bilik V, Tihlárik K (1974) Reactions of saccharides catalyzed by molybdate ions. IX. Epimerization of ketohexoses. Chem Zvesti 28: 106-109.
Binkley W (1963) The fate of cane juice simple sugars during molasses formation. IV. Probable conversion of D-fructose to D-psicose. Int Sugar J 65: 105-106.
Birnbaum S, Pendleton R, Larsson P-O, Mosbach K (1981) Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnology Letters 3: 393-400.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Carballeira J, Quezada M, Hoyos P, Simeó Y, Hernaiz M et al. (2009) Microbial cells as catalysts for stereoselective red–ox reactions. Biotechnology Advances 27: 686-714.
Cleland W, Kreevoy MM (1994) Low-barrier hydrogen bonds and enzymic catalysis. Science 264: 1887-1890.
Doner LW (1979) Isomerization of D-fructose by base: liquid-chromatographic evaluation and the isolation of D-psicose. Carbohydrate Research 70: 209-216.
Du Poët PDT, Arcand Y, Bernier R, Barbotin J, Thomas D (1987) Plasmid stability in immobilized and free recombinant Escherichia coli JM105 (pKK223-200): importance of oxygen diffusion, growth rate, and plasmid copy number. Applied and Environmental Microbiology 53: 1548-1555.
Fersht AR, Shi J, Knill-Jones J, Lowe D, Wilkinson A et al. (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature (London) 314: 235-238.
Fukada K, Ishii T, Tanaka K, Yamaji M, Yamaoka Y et al. (2011) Crystal structure, solubility, and mutarotation of the rare monosaccharide D-psicose. Bulletin of the Chemical Society of Japan: 1105300307.
Garrett RH, Grisham CM (2001) Principles of biochemistry: with a human focus: Thomson Brooks/Cole.
Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Advanced Drug Delivery Reviews 64: 194-205.
Granström TB, Takata G, Tokuda M, Izumori K (2004) Izumoring: a novel and complete strategy for bioproduction of rare sugars. Journal of Bioscience and Bioengineering 97: 89-94.
Hashimoto S, Furukawa K (1987) Immobilization of activated sludge by PVA–boric acid method. Biotechnology and Bioengineering 30: 52-59.
Hayashi N, Iida T, Yamada T, Okuma K, Takehara I et al. (2010) Study on the postprandial blood glucose suppression effect of D-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects. Bioscience, Biotechnology, and Biochemistry 74: 510-519.
Hossain MA, Izuishi K, Maeta H (2003) Protective effects of D-allose against ischemia reperfusion injury of the rat liver. Journal of Hepato-Biliary-Pancreatic Surgery 10: 218-225.
Hossain MA, Izuishi K, Tokuda M, Izumori K, Maeta H (2004) D-Allose has a strong suppressive effect against ischemia/reperfusion injury: a comparative study with allopurinol and superoxide dismutase. Journal of Hepato-Biliary-Pancreatic Surgery 11: 181-189.
Hossain MA, Kitagaki S, Nakano D, Nishiyama A, Funamoto Y et al. (2011) Rare sugar D-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochemical and Biophysical Research Communications 405: 7-12.
Iida T, Kishimoto Y, Yoshikawa Y, Hayashi N, Okuma K et al. (2008) Acute D-psicose administration decreases the glycemic responses to an oral maltodextrin tolerance test in normal adults. Journal of Nutritional Science and Vitaminology 54: 511-514.
Ishida Y, Kamiya T, Itoh H, Kimura Y, Izumori K (1997) Cloning and characterization of the D-tagatose 3-epimerase gene from Pseudomonas cichorii ST-24. Journal of Fermentation and Bioengineering 83: 529-534.
Ishihara Y, Katayama K, Sakabe M, Kitamura M, Aizawa M et al. (2011) Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells. Journal of Bioscience and Bioengineering 112: 638-642.
Izumori K (2006) Izumoring: a strategy for bioproduction of all hexoses. Journal of Biotechnology 124: 717-722.
Jia M, Mu W, Chu F, Zhang X, Jiang B et al. (2014) A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization. Applied Microbiology and Biotechnology 98: 717-725.
Köpper S, Freimund S (2003) The composition of keto aldoses in aqueous solution as determined by NMR spectroscopy. Helvetica chimica acta 86: 827-843.
Khoo K-M, Ting Y-P (2001) Biosorption of gold by immobilized fungal biomass. Biochemical Engineering Journal 8: 51-59.
Kim H-J, Lim B-C, Yeom S-J, Kim Y-S, Kim D et al. (2010a) Roles of Ile66 and Ala107 of D-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, D-fructose. Biotechnology Letters 32: 113-118.
Kim H-J, Yeom S-J, Kim K, Rhee S, Kim D et al. (2010c) Mutational analysis of the active site residues of a D-psicose 3-epimerase from Agrobacterium tumefaciens. Biotechnology Letters 32: 261-268.
Kim K, Kim H, Oh D, Cha S, Rhee S (2006) Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes. Journal of Molecular Biology 361: 920.
Laidler KJ (1984) The development of the Arrhenius equation. Journal of Chemical Education 61: 494.
Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Progress in Polymer Science 37: 106-126.
Li Z, Gao Y, Nakanishi H, Gao X, Cai L (2013) Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein Journal of Organic Chemistry 9: 2434-2445.
Long Z, Huang Y, Cai Z, Cong W, Ouyang F (2004) Immobilization of Acidithiobacillus ferrooxidans by a PVA-boric acid method for ferrous sulphate oxidation.
Longo MA, Combes D (1999) Thermostability of modified enzymes: a detailed study. Journal of Chemical Technology and Biotechnology 74: 25-32.
Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B et al. (2015) Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial cell factories 14: 57.
Mateus D, Alves S, Da Fonseca M (1999) Diffusion in cell‐free and cell immobilising κ‐carrageenan gel beads with and without chemical reaction. Biotechnology and Bioengineering 63: 625-631.
Matsuo T, Baba Y, Hashiguchi M, Takeshita K, Izumori K et al. (2001) Less body fat accumulation with D-psicose diet versus D-fructose diet. Journal of Clinical Biochemistry and Nutrition 30: 55-65.
Matsuo T, Izumori K (2009) D-Psicose inhibits intestinal α-glucosidase and suppresses the glycemic response after ingestion of carbohydrates in rats. Journal of Clinical Biochemistry and Nutrition 45: 202.
Matsuo T, Suzuki H, Hashiguchi M, Izumori K (2002) D-Psicose is a rare sugar that provides no energy to growing rats. Journal of Nutritional Science and Vitaminology 48: 77-80.
Matsuo T, Tanaka T, Hashiguchi M, Izumori K, Suzuki H (2003) Metabolic effects of D-psicose in rats: studies on faecal and urinary excretion and caecal fermentation. Asia Pacific Journal of Clinical Nutrition 12: 225-231.
McDonald EJ (1967) A new synthesis of d-psicose (D-ribo-hexulose). Carbohydrate Research 5: 106-108.
Miller BS, Swain T (1960) Chromatographic analyses of the free amino‐acids, organic acids and sugars in wheat plant extracts. Journal of the Science of Food and Agriculture 11: 344-348.
Miller EM, Nickoloff JA (1995) Escherichia coli electrotransformation. Electroporation Protocols for Microorganisms: Springer. pp. 105-113.
Mitani T, Hoshikawa H, Mori T, Hosokawa T, Tsukamoto I et al. (2009) Growth inhibition of head and neck carcinomas by D‐allose. Head & Neck 31: 1049-1055.
Mu W, Chu F, Xing Q, Yu S, Zhou L et al. (2011) Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. Journal of Agricultural and Food Chemistry 59: 7785-7792.
Mu W, Zhang W, Fang D, Zhou L, Jiang B et al. (2013) Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp. Biotechnology Letters 35: 1481-1486.
Mu W, Zhang W, Feng Y, Jiang B, Zhou L (2012) Recent advances on applications and biotechnological production of D-psicose. Applied Microbiology and Biotechnology 94: 1461-1467.
Muniruzzaman S, Tokunaga H, Izumori K (1995) Conversion of D-psicose to allitol by Enterobacter agglomerans strain 221e. Journal of Fermentation and Bioengineering 79: 323-327.
Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N et al. (2003) A novel inhibitory effect of D-allose on production of reactive oxygen species from neutrophils. Journal of Bioscience and Bioengineering 96: 89-91.
Oshima H, Kimura I, Izumori K (2006) D-Psicose contents in various food products and its origin. Food science and Technology Research 12: 137-143.
Petruš L, Petrušová M, Hricoviniova Z (2001) The Bilik reaction. Glycoscience: Springer. pp. 15-41.
Poonperm W, Takata G, Ando Y, Sahachaisaree V, Lumyong P et al. (2007) Efficient conversion of allitol to D-psicose by Bacillus pallidus Y25. Journal of Bioscience and Bioengineering 103: 282-285.
Rueda F, Cano-Garrido O, Mamat U, Wilke K, Seras-Franzoso J et al. (2014) Production of functional inclusion bodies in endotoxin-free Escherichia coli. Applied microbiology and biotechnology 98: 9229-9238.
Sadana A, Henley JP (1987) Single‐step unimolecular non‐first‐order enzyme deactivation kinetics. Biotechnology and bioengineering 30: 717-723.
Schägger H, Von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166: 368-379.
Smidsrød O (1990) Alginate as immobilization matrix for cells. Trends in Biotechnology 8: 71-78.
Stănciuc N, Ardelean A, Diaconu V, Râpeanu G, Stanciu S et al. (2011) Kinetic and thermodynamic parameters of alkaline phosphatase and γ—glutamyl transferase inactivation in bovine milk. Dairy Science & Technology 91: 701-717.
Sui L, Dong Y, Watanabe Y, Yamaguchi F, Hatano N et al. (2005) Growth inhibitory effect of D-allose on human ovarian carcinoma cells in vitro. Anticancer Research 25: 2639.
Sui L, Nomura R, Dong Y, Yamaguchi F, Izumori K et al. (2007) Cryoprotective effects of D-allose on mammalian cells. Cryobiology 55: 87-92.
Sun Y, Hayakawa S, Izumori K (2004a) Antioxidative activity and gelling rheological properties of dried egg white glycated with a rare keto‐hexose through the Maillard reaction. Journal of Food Science 69: C427-C434.
Sun Y, Hayakawa S, Izumori K (2004b) Modification of ovalbumin with a rare ketohexose through the Maillard reaction: effect on protein structure and gel properties. Journal of Agricultural and Food Chemistry 52: 1293-1299.
Sun Y, Hayakawa S, Ogawa M, Izumori K (2007) Antioxidant properties of custard pudding dessert containing rare hexose, D-psicose. Food Control 18: 220-227.
Takata MK, Yamaguchi F, Nakanose K, Watanabe Y, Hatano N et al. (2005) Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells. Journal of Bioscience and Bioengineering 100: 511-516.
Tseng WC, Lin JW, Wei TY, Fang TY (2008) A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical Biochemistry 375: 376-378.
Wu KYA, Wisecarver KD (1992) Cell immobilization using PVA crosslinked with boric acid. Biotechnology and Bioengineering 39: 447-449.
Yagi K, Matsuo T (2009) The study on long-term toxicity of D-psicose in rats. Journal of Clinical Biochemistry and Nutrition 45: 271.
Yamaguchi F, Kamitori K, Sanada K, Horii M, Dong Y et al. (2008) Rare sugar D-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7. Journal of Bioscience and Bioengineering 106: 248-252.
Zain NAM, Suhaimi MS, Idris A (2011) Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochemistry 46: 2122-2129.
Zhang L, Jiang B, Mu W, Zhang T (2009a) Bioproduction of D-psicose using permeabilized cells of newly isolated Rhodobacter sphaeroides SK011. Frontiers of Chemical Engineering in China 3: 393-398.
Zhang L, Mu W, Jiang B, Zhang T (2009b) Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose. Biotechnology Letters 31: 857-862.
Zhang W, Fang D, Xing Q, Zhou L, Jiang B et al. (2013a) Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704. PloS one 8: e62987.
Zhang W, Fang D, Zhang T, Zhou L, Jiang B et al. (2013b) Characterization of a metal-dependent D-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. Journal of Agricultural and Food Chemistry 61: 11468-11476.
Zhu Y, Men Y, Bai W, Li X, Zhang L et al. (2012) Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biotechnology Letters 34: 1901-1906.

電子全文
全文檔開放日期:2018/07/22
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Agrobacterium sp. ATCC 31750 菌株經基因重組後所產阿洛酮糖表異構酶對於活性及特性之影響
2. 利用蛋白質工程提昇 D-阿洛酮糖表異構酶之活性回收及熱穩定性
3. 利用 D-阿洛酮糖表異構酶及 L-鼠李糖異構酶生產 D-阿洛酮糖及 D-阿洛糖之最適化探討
4. 嗜高溫海藻糖生成相關酵素之基因選殖以及海藻糖苷糊精生成酶的生產與特性探討
5. 嗜高溫古細菌之重組肝醣支切酶的純化及其特性之探討
6. 利用羧酸化磁珠固定 C 端帶有離胺酸標籤之Thermoanaerobacterium saccharolyticum NTOU1 L-鼠李糖異構酶
7. 源自Synechocystis sp. PCC6803 藍藻蛋白合成酶在大腸桿菌之表現及特性探討
8. 源自Thermoanaerobacterium saccharolyticum NTOU1 之 L-鼠李糖異構酶的固定化探討
9. Agrobacterium sp. ATCC 31750菌株所產阿洛酮糖表異構酶之基因選殖、表現、純化及特性探討
10. Geodermatophilus obscurus DSM 43160 來源之 L-核糖異構酶之基因選殖、表現、純化及特性探討
11. 由攜帶藍藻蛋白合成酶基因的重組乳酸菌生產藍藻蛋白與利用反應曲面法進行培養基最適化之探討
12. 熱穩定鼠李糖異構酶之表現、純化、特性探討及蛋白質工程
13. 海藻糖生成酶的生產與特性探討
14. 活性部位芳香族殘基對於海藻糖苷糊精生成酶之轉糖基與水解作用的影響
15. 鹽濃度對於嗜熱性肝醣支切酶的活性及構形之影響
 
* *