字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:林琨祐
研究生英文姓名:Lin, Kun-You
中文論文名稱:DNA浮水印技術之研究與系統開發
英文論文名稱:A Study on DNA Watermark Technology and System Development
指導教授姓名:白敦文
口試委員中文姓名:教授︰許輝煌
副教授︰張顥騰
副教授︰蔡懷寬
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學號:10157043
請選擇論文與海洋研究相關度:無相關
請選擇論文為:應用型
畢業年度:105
畢業學年度:104
學期:
語文別:英文
論文頁數:71
中文關鍵詞:DNA浮水印加密錯誤糾正碼內含子外顯子
英文關鍵字:DNA watermarkEncryptionECCIntronExon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
生物為求生存及繁衍後代,經由基因序列的複製並傳遞至子世代以達成生生不息的目的,該生物體的基因序列資訊可做為長期儲存個體基因性狀的媒介。若能將浮水印序列以人工方式嵌入於個體基因序列,使該序列檔案隨時隨地都能隱含使用者所加入具有可識別訊息的功能,或者讓活體生物的基因體序列攜帶重要的隱藏資訊,是目前後基因體世代在面對基因版權或基因序列個資防範議題的重要研究項目之一。
本研究提出一種針對基因序列加入浮水印的嵌入及解碼技術,分別使用基因序列的內含子與外顯子區域序列進行浮水印序列的嵌入及解碼,並根據生物不同特徵而選擇不同類型的嵌入模組。在內含子區域以直接鑲嵌序列方式將浮水印資訊嵌入於目標序列,該類技術可以插入相對大量的隱藏訊息;使用外顯子序列區域處理浮水印資訊的鑲嵌技術,主要是藉由胺基酸同義置換的特性嵌入浮水印資訊於目標中,並使其保有生物基因功能的相容性。嵌入的訊息同時使用進階加密標準進行鑲嵌浮水印序列的加密以加強隱藏訊息保密的安全性,最後透過錯誤校正碼與冗餘資訊驗證技術提高對抗基因隨機突變的雜訊及提升系統解碼的強健性。本基因浮水印加密系統集合編碼、解碼與錯誤碼檢測校正技術以強化系統的安全性及強健性,是一套可以落實DNA浮水印相關應用的完整系統。
To maintain the ability of an organism to survive and reproduce, gene transmission and inheritance to off-springs are primary principles of life sustainability. Thus, genome sequences of an organism can be considered as long-term storage media for individual genetic traits. If an artificial watermark sequence could be embedded within a gene sequence and enable the gene sequence possessing identifiable function at anytime from anywhere, or even make the gene sequences carry concealed information within a living organism, these applications have become the most important research issue for gene copyright or personal information protection in the post genome era.
This work proposed a novel method to embed and decode DNA watermark sequence by inserting encrypted messages into genetic exon or intron regions annotated in a query DNA sequence. Based on the property of regions, two different embedding models could be selected. For intron region mechanisms, the watermark messages were embedded by inserting maximized carried messages. For exon region mechanisms, the watermark messages were embedded based on synonymous substitution to keep biocompatibility of organisms in nature. All embedded messages were encrypted by AES for enhancing security and added with ECC and redundant data for enhancing robustness to against the random substitution mutations. The proposed DNA watermark system is designed comprehensively for a fully functional system regarding security, robustness, and biocompatibility.
致謝 I
摘要 II
Abstract III
Table of Contents IV
List of Figures V
List of Tables VI
1 Introduction 1
2 System models 5
2-1 System Overview 5
2-2 DNA Watermark Embedding Models 6
2-2-1 Message converting 6
2-2-2 Error correcting code 10
2-2-3 Sequence BLAST 12
2-2-4 Intron model 13
2-2-5 Exon model 15
2-3 DNA Watermark Decoding Models 21
2-3-1 Global Decoding Model 21
2-3-2 Local Decoding Model 23
3 Example of DNA watermark and system evaluation 26
3-1 Testing Data 26
3-2 Capacity Evaluation 28
3-3 Example of Intron Model 28
3-4 Example of Exon Model 41
3-5 Robustness Evaluation 53
4 Result and Discussion 55
4-1 Capacity of Embedding Models 55
4-2 Analysis of Embedding Models 57
4-3 Adjustment of Substitution Table 59
5 Conclusion 65
Reference 66
Appendix 68
[1] E. P. Consortium, "An integrated encyclopedia of DNA elements in the human genome," Nature, vol. 489, pp. 57-74, Sep 6 2012.
[2] E. Technology of Standards NI, "Announcing the ADVANCED ENCRYPTION STANDARD (AES)," vol. Volume 197, 2001.
[3] R. S. Ramaswami, K. Sasaki, G., Optical Networks: A Practical Perspective: Elsevier Science, 2009.
[4] P. C. Wong, K.-k. Wong, and H. Foote, "Organic data memory using the DNA approach," Communications of the ACM, vol. 46, pp. 95-98, 2003.
[5] M. Liss, D. Daubert, K. Brunner, K. Kliche, U. Hammes, A. Leiherer, et al., "Embedding permanent watermarks in synthetic genes," PLoS One, vol. 7, p. e42465, 2012.
[6] C. T. Clelland, V. Risca, and C. Bancroft, "Hiding messages in DNA microdots," Nature, vol. 399, pp. 533-4, Jun 10 1999.
[7] B. Shimanovsky, J. Feng, and M. Potkonjak, "Hiding Data in DNA," vol. 2578, pp. 373-386, 2003.
[8] N. Yachie, K. Sekiyama, J. Sugahara, Y. Ohashi, and M. Tomita, "Alignment-based approach for durable data storage into living organisms," Biotechnol Prog, vol. 23, pp. 501-5, Mar-Apr 2007.
[9] D. Heider, D. Kessler, and A. Barnekow, "Watermarking sexually reproducing diploid organisms," Bioinformatics, vol. 24, pp. 1961-2, Sep 1 2008.
[10] A. Gehani, T. LaBean, and J. Reif, "DNA-based Cryptography," vol. 2950, pp. 167-188, 2003.
[11] M. S. Sherif T. Amin, Salah El-Gindi, "A DNA-based Implementation of YAEA Encryption Algorithm," 2011.
[12] A. Leier, C. Richter, W. Banzhaf, and H. Rauhe, "Cryptography with DNA binary strands," Biosystems, vol. 57, pp. 13-22, 2000.
[13] D. Prabhu and M. Adimoolam, "Bi-serial DNA Encryption Algorithm(BDEA)," CoRR, vol. abs/1101.2577, 2011.
[14] M. Saeb, E. El-Abd, and M. E. El-Zanaty, "On covert data communication channels employing DNA recombinant and mutagenesis-based steganographic techniques," Computer Journal of BioSystems, vol. 57, pp. 13-22, 2000.
[15] K. M. Hayam Mousa , Waiel Abdel-wahed , Mohiy Hadhoud, "Data Hiding Based on Contrast Mapping Using DNA Medium," 2008.
[16] H. Shiu, K.-L. Ng, J.-F. Fang, R. C. Lee, and C.-H. Huang, "Data hiding methods based upon DNA sequences," Information Sciences, vol. 180, pp. 2196-2208, 2010.
[17] A. K. Ahmed Atito, S. Z. Rida, "DNA-Based Data Encryption and Hiding Using Playfair and Insertion Techniques," Journal of Communications and Computer Engineering vol. 2, pp. 44-49, 2012.
[18] M. Sabry, "A DNA and Amino Acids-Based Implementation of Playfair Cipher," International Journal of Computer Science and Information Security, vol. 8, pp. 129-136, 2010.
[19] D. Haughton and F. Balado, "BioCode: two biologically compatible Algorithms for embedding data in non-coding and coding regions of DNA," BMC Bioinformatics, vol. 14, p. 121, BMC Bioinformatics 2013, 14:121 2013.
[20] D. Heider, M. Pyka, and A. Barnekow, "DNA watermarks in non-coding regulatory sequences," BMC Res Notes, vol. 2, p. 125, 2009.
[21] D. Heider and A. Barnekow, "DNA-based watermarks using the DNA-Crypt algorithm," BMC Bioinformatics, vol. 8, p. 176, 2007.
[22] M. Arita and Y. Ohashi, "Secret signatures inside genomic DNA," Biotechnol Prog, vol. 20, pp. 1605-7, Sep-Oct 2004.
[23] B. Schneier, Applied Cryptography, 1996.
[24] X. Wang and Q. Zhang, "DNA computing-based cryptography," pp. 1-3, 2009.
[25] P. v. O. A.Menezes, S. Vanstone, "Handbook of Applied Cryptography," 1997.
[26] Wikipedia. (2015). ASCII --- Wikipedia{,} The Free Encyclopedia. Available: https://en.wikipedia.org/w/index.php?title=ASCII&oldid=667902076
[27] Wikipedia. (2015). Nucleic acid notation --- Wikipedia{,} The Free Encyclopedia. Available: https://en.wikipedia.org/w/index.php?title=Nucleic_acid_notation&oldid=654524510

(此全文20210809後開放外部瀏覽)
電子全文
全文檔開放日期:2021/08/09
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *