字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:陳奕安
研究生英文姓名:Yi-An Chen
中文論文名稱:黑潮發電機組之穩定分析與動態模擬
英文論文名稱:Stability analysis and dynamic simulation of submerged Kuroshio generator system
指導教授姓名:余興政
口試委員中文姓名:教授︰柯永澤
業界委員︰林正文
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學號:10151007
請選擇論文為:學術型
畢業年度:103
畢業學年度:102
學期:
語文別:中文
論文頁數:83
中文關鍵詞:纜繩設計海流能動態模擬發電機黑潮穩定分析
英文關鍵字:cable designcurrent energydynamic simulationgeneratorKuroshiostability analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:223
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏收藏:0
  在傳統能源逐漸短缺的當今,世界各國都在努力發展再生能源,海流能發電亦是主要的研究對象之一;國立臺灣海洋大學為此研發製造適用於我國海域環境的黑潮發電機組,配合簡易可靠的錨錠纜繩系統與穩定漂浮於海中的載臺進行發電,且不會任意地偏航及側傾,本論文將採用直觀式的方法建立黑潮發電機組剛體模型架構,探討機組載臺結合繫纜後在水中的運動行為,並藉由位移、速度等感測元件量測訊號加以分析其平衡穩定狀態及三維動態模擬,並能真實且完整地呈現整個系統。此外,從建模架構及模擬結果中找出改善黑潮發電機組動態的方法,可先由繫纜與機組接合點位置著手,初步結果將彈性纜繩與機組接合點位置決定在外導罩最前緣的下方沿負x軸方向2.2 m處,此處能讓機組達到俯仰轉矩平衡狀態;接著,再依照所選繫纜的規格調整勁度和阻尼參數,經由多次模擬測試後,其勁度與阻尼參數分別設定為5#westeur024#105 N/m及3#westeur024#105 Ns/m較能使機組之動態達成穩定,故以此組合作為纜繩的模擬樣本;最後,再匯入葉輪受水流衝擊所產生的扭矩大小及外環式直驅發電機的估計規格參數至建模架構中,模擬運算後得知,發電機的葉輪轉速可達57 rpm,並能產生超過54 kW的電能。
Conventional energy is gradually reduced in current years, and several countries around the world attempt to develop renewable energy. The current generator system is one object direction of ocean power research. To this end, the research team at National Taiwan Ocean University presents the design and development of a submerged Kuroshio generator system (SKGS) which is suitable for Taiwan maritime environment. The SKGS was combined with a simple and reliable anchor system and a stable floating platform at sea, and it could ignore changes of yaw and roll through a proper rudder design. An intuitive simulation method by adopting MapleSim software was created a rigid structure modeling of the SKGS. Different modeling frameworks for varied cable design and joint position had been adjusted to meet the requirements in the SKGS. Therefore, the stability analysis, dynamic equilibrium, and motion behavior of the SKGS combined with the cable design were achieved in this study. Furthermore, the method could be obtained to improve the dynamics of the SKGS by modeling framework and simulation results, and it could begin designing the joint position of the cable and the floating platform. In order to achieve the torque equilibrium in pitch-wise of the SKGS, the joint position where is relative the leading infra-edge of the outer duct was set at 2.2 m along the negative x-axis. Next, the stiffness and damping parameters of the cable were assumed 5#westeur024#105 N/m and 3#westeur024#105 Ns/m, respectively, which could achieve dynamic stable of the SKGS after varying simulations; thus, the parameter combinations were setup as a simulated sample of the cable design. Finally, the torque parameters generated by hydrodynamic impact of the impeller and the estimated specifications of the direct-drive generator with an external rotor were imported into the modeling framework. Consequently, the impeller speed and the estimated output power of the SKGS could exceed in 57 rpm and 54 kW, respectively.
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
詞彙或特殊符號說明 IX
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.3 研究方法 7
1.4 論文架構 7
第二章 黑潮發電機 14
2.1 黑潮發電機組研究與開發 14
2.2 黑潮發電機組簡介 15
2.2.1 導罩位置設計原理 16
2.2.2 機組構型設計原理 16
2.2.3 主翼襟翼設計原理 17
2.2.4 錨錠纜繩設計原理 17
第三章 水下漂浮系統理論 23
3.1 基礎理論 23
3.1.1 受力影響 23
3.1.2 座標系統 23
3.2 機組數學模型 25
3.2.1 剛體動態方程式 26
3.2.2 附加質量矩陣 29
3.2.3 流體動力阻尼矩陣 31
3.2.4 重力和浮力矩陣 32
3.2.5 六自由度動態方程式 34
3.3 繫纜數學模型 38
3.3.1 座標幾何關係 38
3.3.2 靜力平衡方程式 39
3.3.3 流體力函數 41
3.3.4 拉力與拉力矩 42
第四章 穩定分析與動態模擬 49
4.1 發電機組建模架構 49
4.1.1 機組剛體建模 49
4.1.2 輸入受力修正 49
4.1.3 運動阻力限制 51
4.1.4 繫纜剛體建模 54
4.1.5 感測元件建模 55
4.2 穩定分析與動態模擬結果 55
4.2.1 勁度與阻尼參數 55
4.2.2 繫纜與機組接合點 56
4.3 黑潮發電機效率估測 57
第五章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 80
參考文獻 81

[1] REN21, “Renewables 2014 global status report,” http://www.ren21.net/ REN21Activities/GlobalStatusReport.aspx, 2014.
[2] 經濟部能源局,「我國再生能源發展現況與策略」,2013。
[3] 洪添盛,「臺灣發展海洋再生能源之研究」,碩士論文,國立臺灣海洋大學,2007。
[4] 劉文俊,臺灣的潮汐,自行出版,臺北,第283頁,1996。
[5] 唐存勇,「臺灣東部海域自然資源綜合性研究(I)綠島海域流場、地形地質、水文與生態精密調查」,行政院國家科學委員會專題研究計畫成果報告,2010。
[6] Y.Z. Kehr, C.H. Tsai, S.J. Cheng, C.W. Lin, and T.F. Chen, “The development and testing of a submerged tidal current power generator,” Journal of Coastal and Ocean Engineering, Vol. 13, No. 2, pp. 155-169, 2013.
[7] European Marine Energy Centre, http://www.emec.org.uk/, 2014.
[8] Marine Current Turbines, http://www.marineturbines.com/, 2014.
[9] Open Hydro, http://www.openhydro.com/home.html, 2014.
[10] Scotrenewables Tidal Power, http://www.scotrenewables.com/, 2014.
[11] Alstom, http://www.alstom.com/, 2014.
[12] Andritz Hydro Hammerfest, http://www.hammerfeststrom.com/, 2014.
[13] Atlantis Resources Corporation, http://atlantisresourcesltd.com/, 2014.
[14] Voith Hydro, http://voith.com/en/index.html, 2014.
[15] J. VanZwieten, F.R. Driscoll, A. Leonessa, and G. Deane, “Design of a prototype ocean current turbine - Part I: Mathematical modeling and dynamics simulation,” Ocean Engineering, Vol. 33, pp. 1485-1521, 2006.
[16] J. VanZwieten, F.R. Driscoll, A. Leonessa, and G. Deane, “Design of a prototype ocean current turbine - Part II: Flight control system,” Ocean Engineering, Vol. 33, pp. 1522-1551, 2006.
[17] D.P. Coiro, A.D. Marco, F. Scherillo, U. Maisto, R. Familio, and G. Troise, “Harnessing marine current energy with tethered submerged systems: Experimental tests and numerical model analysis of an innovative concept,” in Proceedings of the International Conference on Clean Energy Production (ICCEP), Capri, Italy, 2009.
[18] D.P. Coiro, G. Troise, F. Scherillo, A.D. Marco, and U. Maisto, “Experimental tests of GEM - Ocean’s kite, an innovative patented submerged system for marine current energy production,” in Proceedings of the International Conference on Clean Energy Production (ICCEP), Ischia, Italy, 2011.
[19] K. Takagi, Y. Suyama, and K. Kagaya, “An attempt to control the motion of floating current turbine by the pitch control,” in Proceedings of the OCEANS’11 IEEE/OES MTS, Kona, Hawaii, 2011.
[20] K. Sakata, T. Gonoji, and K. Takagi, “A motion of twin type ocean current turbines in realistic situations,” in Proceedings of the OCEANS’12 IEEE/OES MTS, Yeous, Korea, 2012.
[21] K. Takagi, T. Waseda, S. Nagaya, Y. Niizeki, and Y. Oda, “Development of a floating current Turbine,” in Proceedings of the OCEANS’12 IEEE/OES MTS, Yeous, Korea, 2012.
[22] T. Gonoji, K. Takagi, and K. Takeda, “Motion of twin type ocean current turbine at the time of startup and accident,” in Proceedings of the OCEANS’13 IEEE/OES MTS, San Diego, 2013.
[23] J.H. VanZwieten Jr., W.E. Laing Jr., and C.R. Slezycki, “Efficiency assessment of an experimental ocean current turbine generator,” in Proceedings of the OCEANS’11 IEEE/OES MTS, Kona, Hawaii, 2011.
[24] J.H. VanZwieten Jr., M.T. Young, and K.D. von Ellenrieder, “Design and analysis of an ocean current turbine performance assessment system,” in Proceedings of the OCEANS’12 IEEE/OES MTS, Yeous, Korea, 2012.
[25] J.H. VanZwieten Jr., N. Vanrietvelde, and B.L. Hacker, “Numerical simulation of an experimental ocean current turbine,” IEEE Journal of Oceanic Engineering, Vol. 38, No. 1, pp. 131-143, 2013.
[26] B. Buckham, M. Nohon, M. Seto, X. Zhao, and C. Lambert, “Dynamics and control of a towed underwater vehicle system. Part I: Model development,” Ocean Engineering, Vol. 30, pp. 453-470, 2003.
[27] C. Lambert, M. Nahon, B. Buckhan, and M. Seto, “Dynamics and control of towed underwater vehicle system. Part II: Model validation and turn maneuvering optimization,” Ocean Engineering, Vol. 30, pp. 471-485, 2003.
[28] J. Wu, A.T. Chwang, “A hydrodynamic model of a two - part underwater towed system,” Ocean Engineering, Vol. 27, pp. 455-472, 2000.
[29] J. Evans, M. Nahon, “Dynamics modeling and performance evaluation of an autonomous underwater vehicle,” Ocean Engineering, Vol. 31, pp. 1835-1858, 2004.
[30] I. Schjolberg, T.I. Fossen, “Modeling and control of underwater vehicle - manipulator systems,” in Proceedings of the Third Conference on Marine Craft Maneuvering and Control (MCMC), Southampton, UK, 1994.
[31] T.I. Fossen, Guidance and Control of Ocean Vehicles, Wiley, England, 1994.
[32] F.M. Fang, C.Y. Chung, and C.H. Li, “Evaluation of wind effect of a square prism by numerical simulation,” Journal of Architecture, Vol. 71, pp. 119-132, 2010.
[33] R.P. Irwin, C. Chauvet, “Quantifying hydrodynamic coefficients of complex structures,” in Proceedings of the OCEANS’07 IEEE, Aberdeen, UK, 2007.
[34] C. Cheng, M. Lau, “Modeling and testing of hydrodynamic damping model for a complex - shaped remotely - operated vehicle for control,” Journal of Marine Science and Application, Vol. 11, pp. 150-163, 2012.
[35] Y.H. Eng, W.S. Lau, E. Low, G.L. Seet, and C.S. Chin, “Estimation of the hydrodynamics coefficients of an ROV using free decay pendulum motion,” Engineering Letters, Vol. 16, No. 3, 2008.
[36] A. Tyagi, D. Sen, “Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach,” Ocean Engineering, Vol. 33, pp. 798-809, 2006.
[37] S. Tang, T. Ura, T. Nakatani, B. Thornton, and T. Jiang, “Estimation of the hydrodynamic coefficients of the complex - shaped autonomous underwater vehicle TUNA - SAND,” Journal of Marine Science and Technology, Vol. 14, pp. 373-386, 2009.
[38] 呂振維,「以計算流體動力學分析水下載具流體動力係數之研究」,碩士論文,國立成功大學,2012。
[39] 侯章祥,「臍帶電纜及洋流對潛航器運動之影響」,碩士論文,國立成功大學,2005。

電子全文
全文檔開放日期:2016/08/05
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *