字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:李俊樺
研究生英文姓名:Li, Jiun-Hua
中文論文名稱:CBM複合益生菌應用於水產養殖水質改善及生物飼料之研究
英文論文名稱:The study of Complex Beneficial microorganisms(CBM)used in aquaculture wastewater improvement and development of biological feed
指導教授姓名:陸振岡
口試委員中文姓名:副教授︰黃沂訓
副教授︰鍾國仁
副教授︰陸振岡
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學號:10133020
請選擇論文為:應用型
畢業年度:103
畢業學年度:102
學期:
語文別:中文
論文頁數:83
中文關鍵詞:CBM複合益生菌生物催化劑水質處理發酵豆粕生物飼料替代魚粉
英文關鍵字:Complex Beneficial Microorganismsimmobilized biocatalystaquaculture wastewater improvementfermented soybean mealbiological feedfish meal substitution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:314
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏收藏:0
複合益生菌組合 CBM菌 (Complex Beneficial Microorganisms)含有數種有益菌種; 在水產養殖上,益生菌可應用於改善、養殖環境、淨化水質與疾病控制。本研究之目的為將複合益生菌應用於水產養殖水質處理以及開發生物飼料,為達成此目標本論文進行以下研究:(1) 利用複合型CBM菌進行包埋固定化製成CBM包埋固定化生物催化劑(Immobilized biocatalyst)作為水質處理劑應用於水產養殖水質改善; (2) 利用功能性CBM菌進行固態厭氧發酵(Anaerobic solid state fermentation)黃豆粕,以發酵豆粕小肽含量為標準,進行發酵條件優化,並去除抗營養因子植酸(Phytic acid)及分解粗纖維(Crude fiber); (3)為解決發酵豆粕胺基酸不平衡以及適口性差的問題,所以利用發酵豆粕與液態魚粉之混合物作為替代魚粉之蛋白質來源,製作生物飼料並探討其對於點帶石斑飼料中魚粉之可行性。本研究利用聚乙烯醇(Polyvinyl alcohol)與海藻酸納(Sodium alginate)將CBM進行包埋固化製成CBM包埋固定化生物催化劑,再以CBM包埋固定化生物催化劑做為水質處理劑改善水質。於淡水與海水模擬廢水實驗中可有效下降氨氮及亞硝酸的含量,還可下降水中硫化物含量。在魚缸水質處理實驗中,結果顯示於海水缸與淡水缸中可有效降低氨氮、亞硝酸及COD。使用功能性CBM菌發酵豆粕,發酵條件優化結果為以TBFCBM (Functional CBM contain Trichoderma and Bacillus licheniformis)進行發酵,發酵條件為(麩皮含量/豆粕含量)(w/w) 11.11%,固液比(1: 0.6444),(接種菌液量/豆粕含量)(v/w) 9.33%,36℃,發酵7天,小肽含量可達到14.89%,而植酸含量可下降63%,粗纖維含量下降22.8%。以發酵豆粕與液態魚粉之混合物作為替代魚粉之蛋白質來源30%時,經八周實驗後對點帶石斑魚成長表現與全魚粉無顯著差異(P >0.05)。
In aquaculture, CBM (Complex Beneficial Microorganisms) can be used in different ways, such as water processing, disease prevention, feed potentiation, and nutrient regulation. The objective of present study is using CBM in aquaculture wastewater improvement and development of biological feed. To accomplish this objective, several specific aims were established;1) CBM was embedded as immobilized biocatalyst (IBC) to improve aquaculture water quality; 2) optimized condition for use functional CBM in ASSF (Anaerobic solid state fermentation) for soybean meal to increase small peptide content, phytic acid and crude fiber can be reduced; 3) using the mixture of functional CBM fermented soybean meal with marine protein concentrate for fish meal substitution. In present study, immobilization pellet were made by taking polyvinyl alcohol (PVA) and sodium alginate (SA) as the skeleton carrier, using embedding method to embed CBM. The results of present study, that CBM (IBC) was used in simulated wastewater of freshwater and wastewater, it brought 、fish tank treatment can effective reduce ammonia, nitrite, COD. In the most detail optimum fermentation condition were( wheat bran /soybean meal ratio) (w/w) 11.11%, solid-liquid ratio (v/w) (1: 0.6444) and (Inoculation/Soybean meal ratio) (v/w) 9.33% in 36℃, 7days. Under the optimum function proces level determined,the content of TCA-NSI reached 14.89%. Soybeam meal after TBFCBM (Functional CBM contain Trichoderma and Bacillus licheniformis) fermentation the content of phytic acid decreased 63% and crude fiber decreased 22.8%. In addition, in a growth performance test, there was no significant difference (P >0.05) in weight gain of orange-spotted grouper(Epinephelus coioides) was found by using 30% fish meal substitution with the mixture of functional CBM fermented soybean meal and marine protein concentrate.
目錄
謝辭 I
中文摘要 II
ABSTRACT III
目錄 IV
表目錄 VI
圖目錄 VII
壹、前言 1
ㄧ、水產養殖之重要性 1
二、水產養殖四大元素 1
三、水產益生菌之定義 3
四、複合益生菌群的由來及理念 4
五、目前水產養殖常用之益生菌群 4
六、複合益生菌應用於改善水質 9
七、包埋固定化生物催化劑 10
八、以發酵豆粕替代魚粉製成生物飼料 12
九、液態魚粉 23
十、本研究之目標 23
貳、材料與方法 24
一、發酵生產CBM菌 24
二、藥品及儀器 24
三、實驗動物 24
四、CBM包埋固定化生物催化劑(IBC)的製備 25
五、利用CBM包埋固定化生物催化劑改善淡水、海水養殖模擬廢水之水質試驗 25
六、利用CBM包埋固定化生物催化劑(IBC)改善淡水、海水魚缸水質測試 26
七、利用CBM包埋固定化生物催化劑(IBC)改善水中硫化物之試驗 26
八、發酵豆粕條件優化 26
九、以發酵豆粕與液態魚粉之混合物作為替代魚粉之蛋白質來源製成生物飼料之成長實驗 29
參、結果 33
一、CBM包埋固定化生物催化劑(IBC)改善淡水模擬廢水之水質試驗 33
二、CBM包埋固定化生物催化劑(IBC)改善海水模擬廢水之水質試驗 33
三、CBM包埋固定化生物催化劑(IBC)改善淡水魚缸水質改善測試 33
四、CBM包埋固定化生物催化劑(IBC)改善海水魚缸水質改善測試 34
五、CBM包埋固定化生物催化劑(IBC)改善水中硫化物之試驗 34
六、不同組合之功能性CBM菌對於發酵豆粕小肽含量之影響 34
七、發酵時間對於發酵豆粕小肽含量之影響 35
八、發酵溫度對於發酵豆粕小肽含量之影響 35
九、接種量對於發酵豆粕小肽含量之影響 35
十、固液比對於發酵豆粕小肽含量之影響 35
十一、麥麩添加量對於發酵豆粕小肽含量之影響 35
十二、反應曲面法發酵條件優化 36
十三、功能性CBM菌發酵豆粕植酸含量 37
十四、功能性CBM菌發酵豆粕粗纖維含量 37
十四、利用發酵豆粕與液態魚粉之混合物作為替代魚粉之蛋白質來源 製成生物飼料之成長實驗 37
肆、討論 39
一、利用CBM包埋固定化生物催化劑(IBC)改善淡水、海水養殖模擬廢水之水質 試驗 39
二、CBM包埋固定化生物催化劑(IBC)改善淡水、海水魚缸水質改善測試 39
三、CBM包埋固定化生物催化劑(IBC)改善水中硫化物之試驗 39
四、功能性CBM菌發酵豆粕小肽含量之增加 40
五、功能性CBM菌發酵豆粕植酸含量 41
六、以功能性CBM菌發酵豆粕取代飼料中魚粉蛋白質之成長實驗 41
伍、參考文獻 43
陸、圖表 53
附錄一 80
附錄二 83

表目錄
表一、實驗飼料蛋白源之原料一般成分分析 53
表二、發酵豆粕取代魚粉實驗自行配置之實驗飼料成分配方表 54
表三、實驗飼料之一般成分分析 55
表四、實驗飼料礦物質預拌劑成分 56
表五、實驗飼料維生素預拌劑成分 57
表六、BOX-BEHNKEN試驗設計因素及水平 58
表七、BOX-BEHNKEN 實驗設計表 58
表八、發酵參數之多變量分析(ANOVA) 59
表九、模型可信度分析 60
表十、單因子參數優化與反應曲面法優化參數優化比較 60
表十一、投餵實驗飼料八周後之成長率、飼料轉換率及存活率 61
表十二、CBM菌發酵豆粕胺基酸組成 62

圖目錄
圖一、CBM菌生產流程 63
圖二、CBM包埋固定化生物催化劑(IBC)處理淡水模擬廢水 64
圖三、CBM包埋固定化生物催化劑(IBC)處理海水模擬廢水 65
圖四、血鸚鵡魚缸以CBM包埋固定化生物催化劑(IBC)進行處理氨氮 66
圖五、血鸚鵡魚缸以CBM包埋固定化生物催化劑(IBC)進行處理亞硝酸 66
圖六、血鸚鵡魚缸以CBM包埋固定化生物催化劑(IBC)進行處理COD 67
圖七、點帶石斑魚缸以CBM包埋固定化生物催化劑(IBC)進行處理氨氮 68
圖八、點帶石斑魚缸以CBM包埋固定化生物催化劑(IBC)進行處理亞硝酸 68
圖九、點帶石斑魚缸以CBM包埋固定化生物催化劑(IBC)進行處理COD 69
圖十、CBM包埋固定化生物催化劑(IBC)處理養殖水中硫化物 70
圖十一、不同組合之功能性CBM菌對於發酵豆粕小肽含量之影響 71
圖十二、發酵時間對於發酵豆粕小肽含量之影響 72
圖十三、發酵溫度對於發酵豆粕小肽含量之影響 72
圖十四、接種菌液量對於發酵豆粕小肽含量之影響 73
圖十五、固液比對於發酵豆粕小肽含量之影響 73
圖十六、麥麩添加量對於發酵豆粕小肽含量之影響 74
圖十七、麥麩添加量與固液比對發酵豆粕小肽含量的影響關係圖 75
圖十八、麥麩添加量與接種菌液量對發酵豆粕小肽含量的影響關係圖 76
圖十九、固液比與接種菌液量對發酵豆粕小肽含量的影響關係圖 77
圖二十、功能性CBM菌發酵豆粕之植酸含量 78
圖二十一、功能性CBM菌發酵豆粕之粗纖維含量 78
圖二十二、投餵實驗飼料八周後之增重率 79

丁賢, 戴志明, 趙素梅. 2000. 加工工藝對植物飼料中抗營養因數的影響. 飼料工業:21(7):P.8~10.
千煙一郎. 1975. 固定化酵素. 株式會社講談社.P.23~25.
小林達治. 1993. 光合成細菌で環境保全.P. 21~215.
王建尤, 周定, 侯文梁, 徐淩. 1993. 固定化黑麴黴利用糖蜜發酵生產檸檬酸. 微生物學通報:33:(6) P. 439~445.
王建龍. 2002. 生物固定化技術與水污染控制. 科學出版社.P.2~6.
王洪祚, 劉世勇. 酶和細胞的固定化. 化學通報.2:P. 22~27.
吉海平, 陳金山. 1998. 光合細菌在淨化水質中的應用試驗研究. 生物工程進展 18(2):P.29~32.
向明. 1998. 臺灣生物農藥研發及其產業-枯草桿菌. P.75.
余林娟, 楊宗韜. 2004. 固定化芽孢桿菌對魚蝦池亞硝酸鹽的控制. 漁業現代化2.P.9~P11.
吳立波, 王建龍. 1999. 複合生物反應器中兩相微生物硝化特性比較. 環境科學.P.16~19.
吳欣達. 1999. 聚-β-羥丁酸及其衍生聚合物生化製程開發.P. 1~115.
李秀珠. 1997. 一種紫色非硫光合細菌對硫化物的抑制及其在對蝦養殖中的應用. 福建水產:P.9~13.
李紹章, 梁運祥, 葛向陽. 2004. 大豆蛋白髮酵降解的多肽在養殖生產中的應用. 飼料廣角:(7):36~39.
杜剛, 王京偉. 2007. 共固定化微生物對養殖水體脫氮的研究. 山西大學學報.30(4):P.544~547.
周紅蕾, 李春玲, 王貴平, 侯加法. 2006. 大豆中抗營養因數及其去除方法概述. 飼料工業.P.23~26
周國勤, 陳兵, 吳偉. 2004. 假單孢菌 Psedomonas stutzeri 的生長特性及其反硝化特性. 湛江海洋大學學報.24(1)P.4.
侯樹宇, 張清敏, 多淼, 王蘭, 鐘歡, 任富海. 2004. 微生態複合菌製劑在對蝦養殖中的應用研究. 農業環境科學學報:23.(5) P. 14.
柯清水. 2002. 臺北市:養魚世界雜誌社. P. 223~228.
夏良宙. 2001. 黃豆仁、黃豆粉、全脂黃豆粉餵飼豬隻的效果. 中國畜牧雜誌:33:(9)P.17~23.
洪平. 1987. 飼料原要覽. 臺灣養羊雜誌.P.100~154
胡曉菁. 2007. 本土木黴菌之篩選及其纖維分解酵素之特性分析與應用研究
朝陽科技大學生物技術研究所碩士論文.P.5.
張文重. 2009. 水產種苗培育技術.前程.P1~150.
張建雲. 1999. 生大豆餅化學鈍化劑的研究.畜牧獸醫學報.30(1):P.1~5.
莊建隆, 洪平. 1993. 水產動物營養飼料.P1~60.
郭世榮, 陳敏隆, 吳豐成, 丁雲源. 2003. 添加光合菌及硝化菌等有益菌降低養殖草蝦病害之評估. 農政與農情 138 期.P.1.
沈士新. 1995. 經濟海水魚 (瑪拉巴石斑) 營養需求之研究。. 農委會專題研究計畫報告.P.1.
陳秀男. 2002. 有益微生物在蝦類養殖之研發與應用. 兩岸養殖漁業交流研討會論文集:P. 151~160.
陳坤, 李根寶, 李敦海, 師麗萍. 2007. 無根萍、酵母菌和紅螺菌的水質凈化和抑藻作用. 生態科學:25:(5) P. 12.
陳建志. 1992. 利用三種桿菌屬Bacillus subtilis、Bacillus cereus、Bacillus megateraiu,去除水中氮化物之研究.P.1~89.
陳展添. 1993. 活性污泥法添加及未添加光合菌處理經厭氣處理後之養豬場廢水.P.1~121
黃正, 李穀. 2002. 固定化硝化細菌去除養殖廢水中氨氮的研究. 華中科技大學學報 31(1):18-20.
游文宏. 1995. 黑麴菌、枯草桿菌、光合菌之生物習性及其添加對養殖環境的影響.P.100~168
黃中宜, 楊盛行. 1989. 利用固態發酵以 Aspergillus oryzae 生產蛋白質分解酵素. 宜蘭農工學報:29:(1) P. 13.
黃永春. 2009. 有效微生物菌群對養蝦水體細菌生態和水質的影響. 廣東海洋大學學報:P. 35~48.
黃賜源,. 1996. 靈芝液態培養及氣舉式生化反應器應用之研究. 私立東海大學化學工程研究所.P.1
趙林果, 王傳槐, 葉漢玲. 2001. 複合酶製劑降解植物性飼料的研究. 飼料研究:(1):P.2~5
劉雪花. 2011. 混合菌株發酵豆粕及其特性研究. 華南理工大學.
鄭耀通, 胡開輝. 1999. 固定化光合細菌淨化養魚水質試驗. 中國水產科學 6(4):P.55~58.
謝哲松. 1995. 微生物生物學. 國立編譯館. p. 1095~1121.
續光清. 1990. 食品工業學.P1~P223
Aido KE, Hendry R, Wool JB. 1982. Solid state fermentation. Advances in Applied Microbiology:28, 201-235.
Akhtar Y, Ghaffar A. 1986. Removal of NH3-N from domestic waste water by fungi. Biotechnology Letters. 8(8):601-604.
Alan JM, Stanley TW. 1992. Actinomycetes as agents of biodegradation in the environment. Gene 115:189-192.
Alazard D, Raimbault M. 1981. Comparative study of amylolytic enzymes production by Aspergillus niger in liquid and solid state cultivation. Advances in Applied Microbiology:12: 113-117
Anna R, Luisa M, Patrizio T, Anatoli P, Sobolev MS, Elena S, Raffaele C. 2004. Phytate Degradation by Lactic Acid Bacteria and Yeasts during the Wholemeal Dough Fermentation: a 31P NMR Study. Journal of Agricultural and Food Chemistry 52:6300-6305.
Armstong DA. 1979. Nitrogen toxicity to Crustacea and aspects of its dynamics in culture system. Proceedings of the second biennial Crustacean Health. 329-360.
Austin B, Stuckey LF, Robertson PAW, Effendi I, Griffith DRW. 1995. A probiotic strain of Vibrio alginolyticus effective in reducing disease caused by Aeromonas salmonicida, V. anguillarum and V. ordalii. Journal of Fish Diseases. 18:93-96.
Barat S, Jana BB. 1991. Distribution of nitrifying bacteria in fish culture tanks: influence of management factors. JournalSeek entry for Acta Microbiologica et Immunologica Hungarica. 38:7-16.
Braker G, Fesefeldt A, Witzel K. 1998. Development of PCR Primer Systems for Amplification of Nitrite Reductase Genes (nirK and nirS) to Detect Denitrifying Bacteria in Environmental Samples. Advances in Applied Microbiology. 64:3769-3775.
Byun JW, Park SC, Benno Y, Oh TK. 1997. Probiotic effect of Lactobacillus sp. DS-12 in flounder(Paralichthys olivaceus). Advances in Applied Microbiology 43:305-308.
Canpel E, M.Young M. 1980. Solid state fermentation systems. Biochemical Engineering Journal. 24-28.
Castaneda S, Rojas MG, Bacqust G, Raimbault M, Viniegra-Gonzaley G. 1990. Biotechnology and Bioengineering: 35, 802-808.
Cavaco-Paulo A. 1998. Mechanism of cellulose action in textile processes. Carbohydrate Polymer 34:273-277.
Cech TR. 1993. Catalytic RNA: structure and mechanism: 229-234
Chahal DS. 1983. Growth characteristics of microorganisms in solid state fermentation for upgrading of protein values of lingo-cellulose and cellulase production.421-442.
Chen JC, Liu PC. 1990. Toxicities of ammonia and nitrite to Penaeus Monodon adolescents. Aquaculture 89:253-262.
Cheng ZJ, Hardy RW, Ursy JL. 2003. Effects of lysine supplementation in plant protein-base diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture 215:225-265.
Chin TS, Chen JC. 1987. Acute toxicity of ammonia to larve of the tiger prawn, Penaeus monodon. Aquaculture 66:247-253.
Claes M, Bengtsson M, Schagerl#westeur055#f H, Tjerneld F, Laurell T, Gorton L, Henderson A. 2005. Investigation of micro-immobilised enzyme reactors containing endoglucanases for efficient hydrolysis of cellodextrins and cellulose derivatives. Analytica chimica acta 550:182-190.
Claseyssens M, Aerts G. 1992. Characterization of cellulolytic activities in commercial Trichoderma reesei preparations: an approach using small, chromogenic substrates. Bioresource Technology 39:143-146.
Coyne MS, Arunakumari A, Averill BA, Tiedje JM. 1989. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Applied and Environmental Microbiology. 55:2924-2931.
Cromwell GL. 1991. Phytase appears to reduce phosphorus in feed, manure. Nature biotechnology.63:14-16.
Elisa E, Paulillo SM, Manfio GP. 1998. Biodegradation of the herbicide duron in soil by indigenous actinomycetes. Chemosphere: 37(3):541-548.
FAO. 2014. Fish farms to produce nearly two thirds of global food fish supply by 2030.1-2
Figueras A, Novoa B, Planas M, Villamil L. 2003. Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics. Aquaculture 219:43-56.
Forster J, Hardy R. 2001. Measuring efficiency in intensive aquaculture. Journal of the World Aquaculture Society 32:41-45.
Fracalossi DM, Craig-Schmidt MC, Lovell RT. 1994. Effect of dietary lipid sources on production of leukotrienes B by head kidney of channel catfish at different temperatures. Journal of Aquatic Animal Health:242-250.
Frokjaer S. 1994. Use of hydrolysates for protein supplementation. Journal of Food Technology 48(10):86-88.
Gallagher ML. 1994. The use of soybean meal as a replacement for fish meal in diets for hybrid stripped bass (Morone saxatilis #westeur024# M. chrysops). Aquaculture 126:119-127.
Geherna R, Pienta R, Cote R. 1989. ATCC Catalogue of Bacteria and Bacteriophages. 17th ed. American Type Culture Collection, Rockville.112-138
Gibson LF, Khoury JT. 1986. Storage and survival of bacteria by ultra-freeze. Letters in Applied Microbiology. 3:127-129.
Harwood CR. 1989. Introduction to the Biotechnology of Bacillus. Harwood, C. R. (ed.). Bacillus. Springer US.1-4
Hassan MR. 2001. Nutrition and feeding for sustainable aquaculture development in the third millennium. In: Subasinghe, R.P., Bueno, P., Phillins, M.J., Hough, C., McGladdery, S.E., Arthur, J.R. (Eds.). Aquaculture in the Third Millennium. Bangkok, Thailand:pp.193-219.
Henderson AL, Schmitt TC, Heinze TM, Cerniglia CE. 1997. Reduction of Malachite Green to Leucomalachite Green by Intestinal Bacteria. Applied And Environmental Microbiology 63(10):4099-4101.
Hesseltine CW. 1972. Solid state fermentations. Biotechnology and Bioengineering:14, 517-532.
Hideo E, Hiromichi O, Shunro K, Toshihiko O. 1999. New atioxidant isolated from Tempeh. Journal of Agricultural and Food Chemistry 44:696-700.
Higa T. 1993. Effective Micro-organisms: An Earth Saving Revolution Vol.1-36
Hirabayashi M. 1998. Fermentation of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poultry Science. 77(4):552-556.
Hong K-J, Lee C-H, Kim SW. 2004. Aspergillus oryzae GB-107 Fermentation Improves Nutritional Quality of Food Soybeans and Feed Soybean Meals. Journal of Medicinal Food .7(4):430-436.
Horikoshi K. 1996. Alkaliphiles-from an industrial point of view. FEMS Microbiology Letters. 18:259-270.
Jackson AJ, Capper BS, Matty AJ. 1982. Evalution of some plant protein in complete diets for the tilapia, Sarotherodon mossambicus. Aquaculture 29:289-297.
Jadhav JP, Govindwar SP. 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23:315-323.
Johonson TR, Case CL. 1995. Laboratory experiments in microbiology The Benjamin/Cummings Publoshing Co.236-324
Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M. 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effect, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 133:257-274.
Khetarpaul N, Chauhan BM. 1991. Sequential fermentation of pearl millet by yeasts and lactobacilli - effect on the antinutrients and in vitro digestibility. Plant Foods for Human Nutrition 41(4):321-327.
Kim YO, Kim HK, Bae KS, Yu JH, Oh TK. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme and Microbial Technology. 22:2-7.
Kobayashi M, Tchan YT. 1973. Treatment of industrial waste solutions and production of useful by products using a photosynthetic bacterial method. Water Research. 7:1219-1224.
Kornegay ET. 2000. Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. In: M. R. Bedford and G. G. Patridge. (Ed.). Enzyme in Farm Animal Nutrition:237-271.
Lahl WJ, Braun SD. 1994a. Enzymetic production of protein hydrolysates for food use. Food Technology. 48(10):68-71.
Lahl WJ, Braun SD. 1994b. Enzymetic production of protein hydrolysates for food use
Food Technology.48(10):68-71.
Liao IC, Gou GH, Chen SN, Lai JY. 1985. Preliminary investigation on the disease of cultured prawn in the pingtung area. Fish Disease Research (VII):86-94.
Lin TP, Chen CL, Chang LK, Tschen JS, Liu ST. 1999. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. Journal of Bacteriology181:5060-5067.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66:506-577.
Madigan MT., Blankenship R. E., M. T. Madigan and C. E. Bauer eds. 1995. Anoxygenic Photosynthetic Bacteria. Springer :915-928
Maget-Dana R, Peypoux F. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. 87:151-174.
Martin DW, Ewbank G, Perkins J, McCarthy AJ. 2001. Metabolism of pentachlorophenol by Saccharomonospora viridis strains isolated from mushroom compost. Soil Biology and Biochemistry 33:1903-1914.
Mente E, Degura S, Santos MG, Houlihan D. 2003. White muscle free amino acid concentrations following feeding a maize gluten dietary protein in Atlantic salmon (Salmo salar L.). Aquaculture 225:133-147.
Michiharu K, Kobayashi M. 1995., Blankenship R. E., M. T. Madigan and C. E. Bauereds. Anoxygenic Photosynthetic Bacteria. Springer:1269-1282
Moir JWB, Crossman LC, Spiro S, Richarson DJ. 1996. The purification of ammonia monooxgenase from Paracoccus denitrificans. FEBS letters 387:71-74.
Nagadomi H, Hiromitsu T, Takeno K, Watanabe M, Sasaki K. 1999. Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. Journal of Bioscience and bioengineering. 87(2):189-193.
Nalli S, Cooper DG, Nicell JA. 2002. Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation.13:343-352.
Narahara H, Koyama Y, Yoshida T, Atthasampunna P, Tiguchi H. 1984. Control of water content in a solid state culture of Aspergillus oryzae. Journal of Fermentation Technology.62: 453-459.
Nikoskelainen S, Ouwehand AC, Bylund G, Salminen S, Liliusa E. 2003. Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish and Shellfish Immunology.15:443-452.
Nix J, Ingols R. 1981. Oxidized manganese from hypolimnetic water as a possible cause of trout mortality in hatcheries. The Progressive Fish-Culturist 43.1 (1981): 32-36.
Ogawa Y, Yamaguchi F, Yuasa K, Thara Y. 1998. Efficient production of γ-polygulutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci. Applied Biochemistry and Biotechnology 61:1684-1687.
Otte S, Schalk J, Kuenen JG, Jetten SM. 1999. Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis Applied Microbiology and Biotechnology. 51:255-261.
Pasamontes L, Haiker M, Wyss M, Tessier M, Loon APGMv. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from fungus Aspergillus fumigatus. Environmental Microbiology:1696-1700.
Penaloza W, Molina MR, Brenes RG, Bressani R. 1985. Solid state fermentation: an alternative to improve the nutritive value of coffee pulp. Appl. Environmental Microbiology:49, 388-393.
Peypoux F, Bonmatin JM, Wallach J. 1999. Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology 51:553-563.
Phillips CJ, Smith Z, Embley TM, Prosser JI. 1999. Phylogenetic differences between particle-associated and planctonic ammonia-oxidizing bacteria of the β-subdivision of the class Proteobacteria in the northwestern Mediterranean Sea. Appl. Environmental Microbiology. 65:779-786.
Pond WG, Church DC, Pond KR. 1995. Basic animal nutrition and feeding. New York. . John Wiley and Sons:77,255-264.
Priest FG. 1993. Systematics and ecology of Bacillus. p. 3-16. In: Hoch, J. A. and Losick, R. (eds.). Bacillus. subtilis. American Society for Microbiology, Washington.:12-26
Pusztai A. 1991.Cambridge University Press, Cambridge. Plant Lectins.:13-34
Regost C, Arzel J, Kaushik SJ. 1999. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima). Aquaculture 193:91-106.
Reigh RC, Ellis SC. 1992. Effects of dietary soybean and fish-protein ratios on growth and body composition of red drum (Sciaenops ocellatus) fed isonitrogenous diets. Aquaculture 104:279-292.
Richardson DJ, Wehrfritz JM, Keech A, Crossman LC, Roldan MD, Sears HJ, Butler CS, Reilly A, Moir JWB, Berks BC et al. . 1998. The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification Biochemical Society Transactions 26:401-408.
Robaina L, Moyano FJ, Izquierdo MS, Socorro J, Vergara JM, Montero D. 1997. Corn gluten and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 157:347-359.
Rutherfurd SM, Chung TK, Moughan PJ. 2002. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. British poultry science 44:598-606.
Senez, Raimbault M, Deschamps F. 1980. Proteins enrichment of starchy substrates for animal feeds by solid state fermentation. Worle Animal Review ., 35:36-39.
Shaiau SY, Pan BS, Chen S, Yu HL. 1988. Successful use of soybean meal with a methionine supplement to replace fish meal on diets fed to milkfish Chanos chanos Forskal. Journal of the World Aquaculture Society.19:14-19.
Shan H, Obbard J. 2001. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Applied Microbiology and Biotechnology 57(5-6):791-798.
Sharma A, Kapoor AC. 1996. Levels of antinutritional factors in pearl millet as affected by processing treatments and various types of fermentation Plant Foods for Human Nutrition 49(3):241-252.
Sharma B, Ahlert RC. 1977. Nitrification and nitrogen removal. Water Research.11:879-925.
Shin Z, R Y, SA P, DK C, CW A, HS N, KS K, HJ L. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. Journal of Agricultural and Food Chemistry 49:3004-3009.
Sisson JW, Thurston SW. 1984. survival of dietary antigens in the diegstive tract of calves intolent to soybean products. Research in Veterinary Science:37:242-246.
Slepecky RA. 1992. What is a Bacillus. p. 1-22. In: Doi, R. H. and Gloughlin, M. M. (eds.) Biology of Bacillus. Butterworth Heinemann, USA.
Spellman D, McEvoy E, Cuinn OG, FitzGerald RJ. 2003. Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods of quantification of degree of hydrolysis. International Dairy Journal 13:447-453.
Tacon A. 1994. Feed ingredients for carnivorous fish species: alternatives to fishmeal and other fishery resources. 881:35pp.
Tacon A. 1998. FAO aquaculture production update. Aquafeeds 2:13-16.
Takii K, Shimeno S, Tkeda M, Kamekawa S. 1996. The effect of feeding stimulants in diet on digestive enzyme activities of eel. Bulletin of the Japanese Society of Scientific Fisheties 52:1449-1454.
Thompson LU. 1993. Potential health benefits and problems associated with antinutrients in foods. Food Research International. 26:131-149.
Toranzo AE, Magari#westeur050#os B, Romalde JL. 2005. A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246(1-4):37-61.
Viikari L, Kantelinen A, Sundquist J, Linko M. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiology Review .13:335-350.
Vrati S. 1984. Single cell protein production by photosythetic bacteria grown on the clarified effluents of biogas plant. Applied Microbiology and Biotechnology. 19:199-202.
Waldrop PW, Ramsey BE, Hellwig HM, Smith NK. 1985. Optimum Processing for soybean meal used used in broiler diets. Poultry Science .64:2314-2320.
Wang HH, Chiou JY, Wang JY, C.Y. H, Tien WC. 1984. Cephalosporin C production by solid state fermentation with rice grains. Microbiology and Immunology:17, 55-69.
Wilson RP. 1989. Amino acid and protein. Fish Nutrition Academic., CA:112-153.
Wilson RP, Cowey CB. 1985. Amino acid composition of whole body tissue of rainbow trout and Atlantic salmon. Aquaculture 48:373-376.
Wood TM, McCare SI, Bhat KM. 1980. The isolation,purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulose. Biochemical Journal 189:51-65.
Wu YV, Rosati RR, Sessa D, Brown PB. 1995. Utilization of corn gluten feed by Nile tilapia.57:305-309.
Yang SS, Huang CI. 1994. Protease production by amylolytic fungi in solid state fermentation. Chin. Journal of Agricultural and Food Chemistry. 32, 589-601.
Yang SS, Jang HD, Liew CM, Du JC. 1993. Protein enrichment of sweet potato residue by solid state cultivation with mono-and co-cultures of amylolytic fungi. Applied Microbiology and Biotechnology:9: 258-264.
Yang SS, Ling MY. 1989. Tetracycline production with sweet potato residue by solid state fermentation. Biotechnology and Bioengineering :33, 1021-1028.
Yang SS, Yuan SS. 1990. Oxytetracycline production by Streptomyces rimosus in solid state fermentation of sweet potato residue. Applied Microbiology and Biotechnology:6, 261-268.
Yoshimatsu T, Furuichi M, Kitajima C. 1992. Optimum level og protein in purified experimental diets for redlip mullet. Bull. . Bulletin of the Japanese Society for the Science of Fish.58, 2111-2117.
Zambonino J, Infante J, Cahu C, Peres A. 1997. Partial substitution of diet and tripeptides for native proteins in sea bass diets improves Dieentrarchus labrax larval development. Journal of Nutrition 127:608-614.
Zamora RG, Veum TL. 1979. Whole Soybeans Fermented with Aspergillus Oryzae and Rhizopus Oligosporus for Growing Pigs. Journal of Animal Science 48:63-68.
Zur O. 1981. Primary production in intensive fish ponds and a complete organic carbon balance in the ponds. Aquaculture 23(1):197-210.

(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *