字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:龔韋婷
研究生英文姓名:Gong, Wei-Ting
中文論文名稱:天文定位的計算方法
英文論文名稱:A Computational Method for Astro Fixing: The SOFT Method
指導教授姓名:陳志立
口試委員中文姓名:教授︰劉進賢
副教授︰許添本
教授︰汪進財
教授︰張建仁
副教授︰陳志立
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:商船學系
學號:10271005
請選擇論文與海洋研究相關度:直接相關
請選擇論文為:學術型
畢業年度:103
畢業學年度:102
學期:
語文別:中文
論文頁數:57
中文關鍵詞:航海天文定位航進定位SOFT法
英文關鍵字:NavigationAstronomical vessel positionRunning fixSOFT method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏收藏:0
本文提出航法導向定位構思的計算方法並命名為SOFT法來求解天文定位問題。因目前決定天文定位的計算方法,大多數以天體的觀點,即位置圈概念,導致這些計算方法過於複雜而使得航海者難以使用。為了改進此項缺點,SOFT法則採用位置線概念,其係以觀測者觀點切入,即以直線取代曲線簡化計算公式;然因該簡化思維隱含著「試誤法」的特性,故SOFT法使用「推算船位取代假設船位」和「迭代法」等兩方法處理之。另外,採用航進定位概念處理不同觀測時間之問題。更重要的是,SOFT法係是運用平面幾何學的三性質,即垂直、平行與對稱等,推導出關鍵的計算公式;而該等公式配合引航學的「平均緯度航法」,即可完整地建構SOFT法。進而再以SOFT法開發具有使用者圖形介面的程式並命名為AVP-SOFT。最後,以數個標準的計算實例來驗證本文所提出SOFT法的簡潔性與精確性。
A computational method, namely Sailing-Oriented Fix Thinking (SOFT), is proposed to solve the problem of the astronomical vessel position (AVP). Since most conventional methods to determine the AVP are based on circles of position concept (from viewpoint of the celestial body), they are too complicated to be easily used for the navigator. To improve the disadvantage of those conventional methods, the SOFT method adopts the lines of position concept (from viewpoint of the observer), which can determine the AVP by two straight lines instead of two curves. Because the SOFT method implies the characteristic of “trial-and-error”, “idea of dead reckoning position replacing assumed position” and “the iteration method” can be used in this SOFT method. In addition, the running fix concept is adopted to tackle the problem of different observing time. Importantly, those used formulae in the SOFT method are derived by using three geometrical properties, perpendicular, parallel, and symmetry for the mean latitude sailings of pilotage. Thereafter, a program, AVP-SOFT, with Graphic User Interface is developed from the SOFT method for the navigator. Finally, several benchmark examples are conducted to show that the SOFT method is simple and accurate.
目次
摘要 I
ABSTRACT II
圖次 V
表次 VI
特殊符號說明 VII

第一章 緒論 1
1.1 背景目的與研究動機 1
1.2 天文定位概念說明 1
1.2.1 圖解法 1
1.2.2 航進定位 2
1.2.3 雙位置圈 3
1.2.4 雙位置線 3
1.3 天文定位問題描述與思考 4
1.4 論文架構 5

第二章 文獻回顧 11
2.1 雙位置圈計算法 11
2.1.1 代數法求解雙位置圈定位(COPs-AM) 11
2.1.2 幾何法求解雙位置圈定位 (COPs-GM) 12
2.2 雙位置線計算法 13
2.2.1 雙Sumner位置線求解定位 (Sumner LOPs) 13
2.2.2 雙Hilaire位置線求解定位 (Hilaire LOPs) 13
2.3 小結 14

第三章 航法導向定位構思計算法與公式推導 21
3.1 理論背景 21
3.1.1 計算法之Hilaire位置線的假設 21
3.1.2 航法導向定位構思(SOFT)理論背景 21
3.2 公式推導 22
3.2.1 航進定位概念及迭代法 23
3.2.2 SOFT的關鍵公式推導 23
3.3 小結 28

第四章 計算程序建構與程式開發 35
4.1 計算程序建構 35
4.2 計算程式開發 36
4.2.1 程式開發工具 36
4.2.2 AVP_SOFT程式 36
4.3 小結 37

第五章 實例驗證與評析 39
5.1 實例驗證與評析 39
5.1.1 例題1 (有向角小於90°) 39
5.1.2 例題2 (有向角大於90°) 39
5.1.3 例題3 (不同觀測時間) 40
5.1.4 例題4 (高高度) 41
5.1.5 例題5(三天體) 41
5.2 小結 42

第六章 結論與建議 51
6.1 結論 51
6.2 建議 52

參考文獻 53
附錄A 56


圖次
圖1- 1球面等高圈及其要素示意圖 6
圖1- 2天文位置圈繪製要素的推論流程圖 6
圖1- 3截距法概念示意圖 7
圖1- 4天文位置線繪製要素的推論流程圖 7
圖1- 5雙位置圈的天文定位概念示意圖 8
圖1- 6雙Sumner LOPs的天文定位概念示意圖 8
圖1- 7論文架構圖 9
圖2- 1球面三角形邊角關係圖 16
圖2- 2代數法求解雙位置圈之天文定位概念示意圖 16
圖2- 3幾何法求解雙位置圈之天文定位概念示意圖 17
圖2- 4雙Sumner LOPs的天文定位概念示意圖 17
圖2- 5雙Hilaire LOPs的天文定位概念示意圖 18
圖3- 1雙Hilaire位置線圖解法轉為航法導向定位構思示意圖 30
圖3- 2計算位置圈方程組之球面三角示意圖 30
圖3- 3航段2公式的原始與對稱情勢1 31
圖3- 4航段2公式的原始與對稱情勢2 31
圖3- 5考量所有情況下航段2公式的原始與對稱情勢1 32
圖3- 6考量所有情況下航段2公式的原始與對稱情勢2 32
圖4- 1 AVP_SOFT程式主流程圖 38
圖5- 1圖解法概估例題1定位結果 43
圖5- 2執行AVP_SOFT程式計算例題1(面板一) 43
圖5- 3執行AVP_SOFT程式計算例題1(面板二) 44
圖5- 4圖解法概估例題2定位結果 44
圖5- 5執行AVP_SOFT程式計算例題2(面板一) 45
圖5- 6執行AVP_SOFT程式計算例題2(面板二) 45
圖5- 7執行AVP_SOFT程式計算例題3(面板二 46
圖5- 8執行AVP_SOFT程式計算例題4(面板二) 46
圖5- 9執行AVP_SOFT-3程式計算例題5(面板一) 47
圖5- 10執行AVP_SOFT-3程式計算例題5(面板二) 47
圖A- 1 AVP_SOFT程式輸入面板 56
圖A- 2 AVP_SOFT程式計算結果顯示 57



表次
表2- 1 球面三角公式彙整表 19
表2- 2代數法求解雙位置圈之定位比較表 19
表2- 3幾何法求解雙位置圈之定位文獻中各步驟所使用球三公式 20
表2- 4求解雙位置線之定位比較表 20
表3- 1 航段2航距與航向公式彙整表 33
表5- 1 例題1計算定位所需之相關資訊 48
表5- 2例題1使用SOFT定位之計算過程與公式對照表 48
表5- 3例題2計算定位所需之相關資訊 49
表5- 4例題2使用SOFT定位之計算過程與公式對照表 49
表5- 5例題3計算定位所需之相關資訊 50
表5- 6例題4計算定位所需之相關資訊 50
表5- 7例題5計算定位所需之相關資訊 50


1. A’Hearn, M. F. and Rossano, G. S. (1977). Two Body Fixes by Calculator. Journal of The Institute of Navigation, 24(1), 59-66.
2. Bennett, G. G. (1979). General Convention and Solutions- Their Use in Celestial Navigation. Journal of The Institute of Navigation, 26(4), 275-280.
3. Bowditch, N. (1984). American Practical Navigator, DMAH/TC, Washington.
4. Bowditch, N. (2002). American Practical Navigator, 2002 Bicentennial Ed., National Imagery and Mapping Agency, Washington.
5. Carroll, J. V. (2003). Vulnerability Assessment of the U.S. Transportation Infrastructure That Relies on the Global Positioning System. The Journal of navigation, 56(2), 185-194.
6. Chang, J. R., Chen, C. L. and Hsu, T. P. (2004) . Response to Comments on “A Novel Approach to Determine the Astronomical Vessel Position” . Journal of Marine Science and Technology, 12(2), 128-131.
7. Chen, C. L. (2003). New Computational Approaches for Solving the Great Circle Sailing and Astronomical Vessel Position. Ph.D. Dissertation, Department of Civil Engineering, National Taiwan University, Taipei.
8. Chen, C. L. , Weng, G. Y. and Hsu, T. P. (2014). New Computational Approaches to Determine the Astronomical Vessel Position Based on the Sumner Line. Polish Maritime Research. (in print)
9. Chen, C. L., Hsu, T. P. and Chang, J. R. (2003). A Novel Approach to Determine the Astronomical Vessel Position. Journal of Marine Science and Technology, 11(4), 221-235.
10. Chiesa, A. and Chiesa, R. (1990). A Mathematical Method of obtaining an Astronomical Vessel Position. The Journal of Navigation, 43(1), 125-129.
11. Clough-Smith, J. H. (1966). An Introduction to Spherical Trigonometry, Brown, Son & Ferguson Ltd., Glasgow.
12. Cutler, T. J. (2004), Dutton’s Nautical Navigation, Fifteenth Edition, Naval Institute Press, Maryland.
13. De Wit, C. (1979). Some Remarks on Sight Reduction with Matrices. Journal of The Institute of Navigation, 26(3), 252-253.
14. Dozier, C. T. (1949). A Simultaneous Two-Star Fix. Journal of The Institute of Navigation, 2(4), 91-92.
15. Flynn, R. W. (1972). Computer Sight Reduction Based on Intersection of Equal Altitude Circles. Journal of The Institute of Navigation, 19(1), 7-10.
16. Fox, C. (1975). Finding Latitude and Longitude by Calculators. Journal of The Institute of Navigation, 22(4), 293-301.
17. Gery, S. W. (1997). The Direct Fix of Latitude and Longitude from Two Observed Altitudes. Journal of The Institute of Navigation, 44(1), 15-23.
18. Gibson, K. (1994). On the Two-Body Running Fix. The Journal of Navigation, 47(1), 103-107.
19. Hsu, T. P., Chen, C. L. and Chang, J. R. (2005). New Computational Methods for Solving Problems of the Astronomical Vessel Position. The Journal of Navigation, 58(2), 315-335.
20. International Chamber of Shipping (ICS) (2007). Bridge Procedures Guide, fourth edition. Marisec Publications, Lodon.
21. International Maritime Organization (IMO) (2003). Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREG 1972), Consolidated Edition 2003.
22. International Maritime Organization (IMO) (2011). International Convention on standards of Training, Certification and Watchkeeping for Seafarers (STCW 78/95/10), 2011 Edition.
23. International Maritime Organization (IMO) (2012). Operational use of Electronic Chart Display and Information Systems (ECDIS), Model Course 1.27, 2012 Edition.
24. Kotlaric, S. (1971). New Short Method Table (K11) for Direct Finding of a Two Star Fix without Use of Altitude Difference Method. Journal of The Institute of Navigation, 18(4), 440-449.
25. Kotlaric, S. (1981). K-12 Method By Calculator: A Single Program for All Celestial Fixes, Directly or by Position Lines. Journal of The Institute of Navigation, 28(1), 44-51.
26. L#westeur061#tzh#westeur055#ft, M. H., and Dekker, S. W. (2002). On your watch: Automation on the Bridge, The Journal of Navigation, 55(1), 83-96.
27. Maritime and Coastguard Agency (MCA) (2008). Marine Guidance Note No.379, Navigation: Use of Electronic Navigation Aids.
28.Defense Mapping Agency Hydrographic Center (DMAH/TC) (1974). Sight Reduction Tables for Marine Navigation Latitudes 30°-45°, Inclusive (Pub. No. 229, Vol. 3), Washington.
29. National Transportation Safety Board (NTSB) (1995). Marine Accident Report, Grounding of the Panamanian passenger Ship Royal Majesty on Rose and Crown Shoal near Nantucket, Massachusetts (NTSB/MAR-97/01), Washington, DC.
30. Oestmann, G. (2011). Delayed progress in navigation: the introduction of line of position navigation in Germany and Austria, International Journal on Geomathematics, 1(2), 133-143.
31. Ogilvie, R. E. (1977). A New Method of Celestial Navigation. Journal of The Institute of Navigation, 24(1), 67-71.
32. Oil Company International Marine Forum (OCIMF) (2012). Ship Inspection Report (SIRE) Programme, Vessel Inspection Questionnaires for Oil Tankers, Combination Carriers, Shuttle Tankers, Chemical Tankers and Gas Tankers (VIQ5), 2012 Edition.
33. Pepperday, M. (1992). The ‘Two-Body Problem ’At Sea. The Journal of Navigation, 45(1), 138-142.
34. Schager, B. (2008). When Technology Leads Us Astray: A Broadened View of Human Error, The Journal of Navigation, 61(1), 63-70.
35. Schneider, D. I. (2004). An introduction to programming using Visual Basic 6.0, Pearson/Prentice Hall, Upper Saddle River, NJ.
36. Van Allen, J. A. (1981). An Analytical Solution of the Two Star Sight Problem of Celestial Navigation. Journal of The Institute of Navigation, 28(1), 40-43.
37. Watkins, R. and Janiczek, P. M. (1978). Sight Reduction with Matrices. Journal of The Institute of Navigation, 25(4), 447-448.
38. Wight, C. (1976). Direct Methods of Latitude and Longitude Determination by Mini-Computer. Journal of The Institute of Navigation, 23(2), 149-156.

電子全文
全文檔開放日期:2017/07/17
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *